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Abstract

We study numerically the impact of interfacial curvature onto the Marangoni convection in a
two-layer system of immiscible liquids with mass transfer of an alcohol. Assuming a parabolic
velocity profile and constant solute concentration across the gap, the simulations solve Navier-
Stokes equations coupled to advection-diffusion equations in both phases. Interfacial curvature
imposes concentration gradients along the interface as soon as the mass transfer starts. This
leads to an immediate interfacial convection which is superimposed later by the onset of the
actual Marangoni roll cells. Prominent impact of interfacial curvature onto the Marangoni cells
is the occurrence of a locking effect, i.e., the Marangoni roll cells adapt to the shape of the
interface. Whereas mass transfer is enhanced by interfacial curvature compared to the planar
interface in the beginning, locking drastically reduces the mass transfer rate. Even for small
interface curvature significant differences to the planar case are found, which might explain the
accelerated growth of cells in experiments compared to that in numerical simulation recently
observed in Koellner et al. [EJP ST 224 (2015), 261-276].

Keywords: Hele-Shaw Cell, Marangoni Convection, Finite Element Method, Interface
Curvature

1. Introduction

The Marangoni effect characterizes a flow driven by gradients in surface tension along a
fluid-fluid interface. For solutal Marangoni convection, these gradients stem from the concen-
tration distribution of surface-active substances, so-called surfactants. The resulting interfacial
flows can exhibit patterning [1] and oscillations [2] and significantly change mass transfer prop-
erties. Thereby, many technological applications are affected by Marangoni convection including
basic operations in process engineering such as destillation, absorption, and drying[3, 4], liquid-
liquid-extraction [5, 6] and new technologies which use the resulting flow structures to pattern
functional surfaces [7, 8].

In interfacial mass transfer systems, the solutal Marangoni effect can give rise to instability
depending on the material parameters and the direction of mass transfer. According to the linear
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stability analysis of Sternling and Scriven [9], the stationary mode of the Marangoni instability
occurs when the solute in the donating phase has a lower diffusivity than in the accepting phase
provided that viscosity of the latter is lower than that of the donating phase. Characteristic shape
of the stationary Marangoni instability is a pattern of roll cells. In contrast to the simple roll cells
predicted by the linear theory, the solutal Marangoni instability rapidly develops complex and
unsteady flow patterns in experiments, cf. the overview given in [1].

Even though the magnitude of Marangoni convection decreases rapidly with the distance
from the interface, it changes the mass transfer rates observed in such systems. This effect,
already noted in the early experiments of Sherwood and Wei [10], motivated continuing research
on Marangoni flow structures and their relation to mass transfer efficiency [6, 11, 12, 13]. The
combination of experimental flow visualization and numerical analysis has recently improved
understanding of the mechanisms underlying the evolution of patterns in Marangoni convection
[14, 15, 16]. A typical feature is the coarsening of structures, i.e. a steady increase in the size
of the Marangoni cells, which compensates for the equilibrated mixing zone inside the cells by
entraining fresh fluid [14].

While most experimental studies focus on three-dimensional (3D) setups, the vertical struc-
ture of the Marangoni patterns is only accessible from a front view on the two fluids. A simplified
access to this vertical structure by optical methods such as shadowgraphy, interferometry and par-
ticle image velocimetry is provided by means of the Hele-Shaw (HS) cell. The HS cell is a versa-
tile experimental configuration [17] in which the fluids are enclosed between two parallel plates
that are sufficiently close together such that the fluid motion becomes mainly two-dimensional.
Also from the viewpoint of theoretical modeling, the HS setup is advantageous since it may be
described by a two-dimensional (2D) model based on gap-averaged equations [18], which sig-
nificantly saves computational cost compared to full 3D simulations. A detailed one-to-one com-
parison of experimental observations to numerical simulations of solutal Marangoni convection
in the HS setup with a planar interface has been presented in [18]. While a qualitative agreement
was found between experiments and simulations, the experiments appeared quantitatively accel-
erated in time. It was hypothesized that the numerical assumption of a planar interface might be
the reason for the observed deviation. This hypothesis is further supported by the observation
that interface curvature strongly influences Marangoni convection in similar systems [19].

In experiments, interface curvature can result from pinning at small imperfections of the HS
plates or flow asymmetries during the filling procedure. Moreover, dynamic interfacial deforma-
tions in interaction with a Marangoni-driven flow were observed during reactive mass transfer in
the HS cell [20, 21]. These situations call for a study on the influence of interfacial curvature on
the Marangoni patterns.

To better understand the impact of interfacial curvature, Finite-Element simulations are per-
formed by using a well-defined experimental system [14, 18, 22, 23]. This system together with
the mathematical model is explained in Sec. 2. Numerical simulations are advantageous since
interface curvature can be preset at will. To reduce the complexity, we focus on the static case
with a defined interface of sinusoidal shape. In Sec. 3, we investigate the influence of differently
curved interface profiles (by varying periodicity and amplitude) on the onset of Marangoni in-
stability, the evolution of structures, and the mass transfer rates. Conclusions are given in Sec.
4.
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2. Methods

2.1. Considered system

We study Marangoni convection in a two-phase system of two immiscible liquids. Water
forms the lower layer and cyclohexanol (C6H11OH) the upper one, see Fig. 1(a). Both phases are
in thermodynamic equilibrium due to mutual saturation to reduce effects from phase changes and
multi-component diffusion. A weakly surface-active alcohol, 1-butanol (C4H9OH), is dissolved
in the organic phase (2) at a concentration of 7.5 vol.%, corresponding to a molar concentration
of 0.82 mol/l.
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Figure 1: (a) Basic setting of the simulations (adapted from [18]), length scales are nondimensionalized by the height of
the lower layer, d(1) = 20 mm, and Lx = 0.3 d(1) for i = 1, 2. (b) Typical flow profile of Marangoni convection along a
curved interface. Convex and concave areas are defined with respect to phase (1).

The system is placed in a Hele-Shaw (HS) cell in which the gap width between the two
solid glass plates amounts to 2ε = 0.5 mm. In contrast to previous studies, assuming initially a
plane interface, we consider sinusoidal deformations of the interface as sketched in Fig. 1(a) and
defined in Eqs. (13),(14). These deformations are static, i.e. the imposed shape of the interface
remains unchanged during the course of the numerical experiment. We restrict the analysis to
one principal curvature of the interface. The second principal curvature in the gap of the HS
cell is assumed to be infinity which implies a contact angle of ninety degree. We analyse the
impact of the sinusoidal deformations onto the pattern of Marangoni cells. The latter appear as
a result of the stationary Marangoni instability when the solute (butanol) is transferred out of the
organic phase according to the analysis of [9]. Fig. 1(b) sketches the typical velocity profile for
the resulting Marangoni flow at such a curved interface. Interface areas are denoted as concave or
convex with respect to the lower phase (1). Regions of flow towards and away from the interface
are termed as inflow and outflow regions, respectively.

3



2.2. Mathematical model

We simulate Marangoni convection using a common gap-averaged hydrodynamic model [14,
18, 24, 25]. Therfore, we assume a parabolic flow profile and no solute variation across the gap,
an undeformable interface, and an isothermal system. The density ρ(i) of phase (i) and interfacial
tension σ depend (affine) linearly on the concentration of butanol c(i)

b with zero excess volume of
mixing, i.e.

ρ(i) = ρ(i)
re f + ρ(i)

re fβ
(i)
c c(i)

b (1)

σ = σre f + σre fαcc(1)
b , (2)

with the solutal expansion coefficient β(i)
c , the reference phase densities ρ(i)

re f , the reference surface
tension σre f , and the butanol specific surface tension coefficient αc. The other material properties
are assumed to be constant in each phase.

The problem is nondimensionalized with the units listed in Tab. 1 (viscous units, see [14, 18]),
where c0 is the initial butanol concentration, d(1) the lower layer height, ν(1) the kinematic and
µ(1) the dynamic viscosity of the aqueous phase, respectively. The corresponding nondimensional
material parameters are listed in Tab. 2. As illustrated in Fig. 1(a), the computational domain is
a box Ω = [0, l] ×

[
−γ−1/2, γ−1/2

]
× [−l, l] composed of the two fluid phases Ω(1), Ω(2), and the

interface Γ. The origin is fixed as the intersection of the left boundary and the interface. In this
setting a planar interface would be situated at z = 0. In the non-planar case, the interface can be
described by a periodic function f as described in Eqs. (10)-(14). We concentrate on the case of
a horizontally oriented Hele-Shaw cell. In first approximation, this lets us neglect gravity forces
since they act perpendicular to the density gradient.

Table 1: Units of nondimensionalization. The values can be calculated by using the system properties listed in [14, 18].

Unit Value Description

c0 0.82 mol
l molar concentration unit(

d(1)
)2

ν(1) 333 s viscous time unit

ρ(1)
re f

(
d(1)

)3
7.976 · 10−3 kg mass unit

d(1) 0.02 m length unit

µ(1)ν(1)

(d(1))2 3.59 · 10−6 N
m2 unit of pressure

γ =

(
d(1)

)2

ε2 6400 gap width coefficient

For modelling, we average the governing three-dimensional flow equations over the gap [18].
Therefore, we apply two assumptions. First, the nondimensional velocity field u(i)(x, y, z, t) in
phase (i) is assumed two-dimensional (u(i)

y = 0) with the following parabolic dependence on y:

u(i) (x, y, z) =
3
2

(
1 −

y2

ε2

) (
v(i)

x (x, z) ex + v(i)
z (x, z) ez

)
. (3)
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Table 2: System properties of the (cyclohexanol+butanol)/water system. The index (1) marks properites with respect to
the water rich phase.

Description Symbol Value

mass density (1) ρ(1)
re f 997 kg/m3

mass density (2) ρ(2)
re f 955 kg/m3

kinematic viscosity (1) ν(1) 1.2 · 10−6 m2/s

kinematic viscosity (2) ν(2) 20 · 10−6 m2/s

diffusivity butanol (1) D(1) 5 · 10−10 m2/s

diffusivity butanol (2) D(2) 7 · 10−11 m2/s

interfacial tension of the binary system σre f 3.4 · 10−3 N/m

change in interfacial tension via c(1) σre fαc −8.77 · 10−3 (N/m)/(mol/l)

solutal expansion coefficient (1) β(1)
c −0.0172 l/mol

solutal expansion coefficient (2) β(2)
c −0.0128 l/mol

Schmidt number aqueous phase S c(1) = ν(1)

D(1) 2400

Schmidt number organic phase S c(2) = ν(2)

D(2) 2.86 · 105

Marangoni number Ma =
c0σre f αcd(1)

ρ(1)ν(1)D(1) −2.4 · 108

Partition coefficient H 31

Density ratio ρ =
ρ

(2)
re f

ρ
(1)
re f

0.96

Kinematic viscosity ratio ν = ν(2)

ν(1) 16.7

Dynamic viscosity ratio µ = νρ 16.03

Diffusivity ratio D = D(2)

D(1) 0.14

Ratio of expansion coefficients β =
β

(2)
c

β
(1)
c

0.75

Now let

v(i) =

(
v(i)

x

v(i)
z

)
(4)

the two-dimensional gap-averaged velocity. We insert the Hele-Shaw approximation (3) into the
three-dimensional Navier-Stokes equations (in viscous units) and average with respect to the y-
direction perpendicular to the solid plates. The second assumption is that the nondimensional
solute concentration c(i) is constant in y-direction, i.e. c(i) = c(i)(x, z, t).

Hence, we can simplify the three-dimensional Navier-Stokes equations and advection-diffusion
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equations for the solute to the two-dimensional Hele-Shaw model in viscous units:

∂v(1)

∂t
+

6
5

v(1)∇v(1) + ∇p(1) − ∇ ·
(
∇v(1) + (∇v(1))T

)
+ 3γv(1) = 0 (5)

ρ

(
∂v(i)

∂t
+

6
5

v(2)∇v(2)
)

+ ∇p(2) − ∇ ·
(
µ
(
∇v(2) + (∇v(2))T

))
+ 3γµv(2) = 0 (6)

∇ · v(1) = 0 , ∇ · v(2) = 0 (7)

∂c(1)

∂t
+ v(1) · ∇c(1) −

1
S c(1) ∆c(1) = 0 (8)

∂c(2)

∂t
+ v(2) · ∇c(2) −

D
S c(1) ∆c(2) = 0, (9)

where ρ = ρ(2)/ρ(1), µ = µ(2)/µ(1), D = D(2)/D(1) are the density, viscosity, and diffusivity ratios,
respectively. S c(1) = ν(1)/D(1) is the Schmidt number in the aqueous phase (see Tab. 2).

Bottom and top boundaries are considered as impermeable solid walls. We consider an ide-
alized situation in the gap of the HS cell by assuming that the contact angle of the liquid-liquid
interface with the glass walls of the HS cell amounts to 90◦. This allows us to focus onto the
impact of only one principal curvature of the interface. To do so, we prescribe the shape of the
liquid-liquid interface by a continously differentiable function

f : [0, l]→ (−l, l) (10)

and define the interface position by

Γ = {(x, f (x)) |x ∈ [0, l]} . (11)

Hence, f = 0 corresponds to a planar interface. To apply the periodic boundary conditions we
require

f (0) = f (l) = 0, f ′(0) = f ′(l) = 0. (12)

The interface normal (pointing to Ω(2)) can be written as

n =
1√

f ′(x)2 + 1

(
f ′(x)

1

)
. (13)

To vary interface curvature specifically, we simply employ a sinusoidal interface shape. This, for
instance, resembles a state of the experiment in [20]. Hence, we have periodic functions f with
the following definition:

f (x) := K
(
1 − cos

(
2πB

l
x
))
, (14)

where K denotes the amplitude of the interface curve and B denotes the number of periods within
the numerical domain. To ensure differentiability over the periodic boundary, f intersects the left
and right boundary perpendicularly at z = 0.

The interface normal in phase (1) is denoted by n = n(1) = −n(2) . We apply a no slip condi-
tion for velocity and no solute transport over the top and bottom boundary of the domain Ω:

v(1) = 0 , v(2) = 0 for z ∈ {−l, l} (15)

n · ∇c(1) = 0 , n · ∇c(2) = 0 . for z ∈ {−l, l} (16)

6



In the experiments with the simple mass transfer system described in Sec. 2.1, the interface
remains static after the experimental filling procedure [14]. Mathematically, this situation is
expressed by vanishing normal velocity of the interface:

n · v(i) = 0, (17)

for i = 1, 2. The additional no slip condition is

P · v(1) = P · v(2) on Γ , (18)

where P = I − n ⊗ n is the interface projection operator. Solute mass flux at the interface is
assumed to be continuous:

n · ∇c(1) = D n · ∇c(2) on Γ , (19)

and concentration equations are coupled by Henry’s law:

c(2) = H c(1) on Γ . (20)

In the face of the static interface condition Eq. (17), the normal component of the stress
balance condition becomes redundant, such that only the tangential part remains:

Ma
S c(1) P · ∇c(1) = P ·

(
∇v(1) + (∇v(1))T − µ

(
∇v(2) + (∇v(2))T

))
· n on Γ , (21)

where Ma is the Marangoni number. In case of a planar interface we recover the simplified
equations presented in [18].

Furthermore, we apply periodic boundary conditions at the lateral domain boundaries. Initial
conditions are set as follows. Velocities and pressures in both phases are set to zero, initially.
There is no butanol concentration in the water rich phase (1), so butanol is only present in layer
(2), i.e.

c(1)(x, z, 0) = 0 and c(2)(x, z, 0) = 1. (22)

In the planar case, a slight perturbation is necessary to trigger Marangoni convection in our
simulations. We add uniformly distributed noise between

[
0, 10−3

]
in every grid point of the

concentration field. In an initial parameter study for curved interface simulations, we find the
overall simulation results independent of the amplitude of the added noise.

There are some problems inherent in our assumptions, which will be discussed briefly in the
following. The assumption of a parabolic flow profile may be violated due to geometrical effects
or gradients in density or viscosity. A comprehensive discussion on this issue can be found in
[18] along with the conclusion that the model we use is recommended. Another problem that
might influence the simulation results is Taylor dispersion, i.e. solute transport in the middle
of the gap is faster than in the vicinity of the plates. However, in a numerical test of the same
chemical system, Koellner et al. [18] find only marginal deviations of the dispersion model
compared to our standard diffusion model. Therefore, we neglect Taylor dispersion here.

7



2.3. Numerical method

The simulations are performed with the finite element method, using the finite element soft-
ware AMDiS (Adaptive MultiDimensional Simulations), see [26]. The basis is a multi-mesh
method with seperate meshes for Ω(1) and Ω(2). Our system consists of four different subsystems
which are solved sequentially, with suitable boundary conditions applied to every equation (see
Tab. 3).

Table 3: Order of solving the problems and applying the relevant boundary conditions on the interface. In every equation,
one of the boundary conditions is applied with the right-hand side taken explicitly from previous calculations.

Problem Boundary Condition

1 Navier-Stokes flow in phase (2)
µP ·

(
∇v(2) + (∇v(2))T

)
· n = P ·

(
∇v(1) + (∇v(1))T

)
· n − Ma

S c(1) P · ∇c(1),

n · v(2) = 0

2 Navier-Stokes flow in phase (1) v(1) = v(2)

3 Concentration equation in phase (1) 1
S c(1) n · ∇c(1) = D

S c(1) n · ∇c(2)

4 Concentration equation in phase (2) c(2) = Hc(1)

For the finite element method, Lagrange elements are used with a polynomial degree of 2 for
the basis functions, except for pressure, where linear elements are used. A (semi-)implicit Euler
time discretization is used. Linear terms are treated implicitly. Nonlinear terms are treated semi-
implicitly. The equations are coupled by boundary conditions as displayed in Tab. 3. Thereby,
the right hand side of boundary conditions is taken explicitly, i.e., from previous calculations.
Time step requirements turned out to be quite strict. In [14], time step adaptivity by the CFL
condition is used to calculate every time step. This strategy did not work well for the case of
curved interfaces considered here. The time steps calculated with the CFL condition were too
large to resolve the concentration dynamics properly. In conclusion, equidistant time steps τ are
used with

τ =

10−6 for the first ten steps
10−5 otherwise .

(23)

The domain width l = 0.3 is fixed for every simulation (see Fig. 1(a)). Near the interface, a
high grid resolution is required to capture the fine structures arising during Marangoni convec-
tion. Hence, adaptive meshes are indispensable. We use a mesh size of l · 2−9 length units at a
distance of ≤ 10−3 from the interface; l · 2−7 length units in phase (2) in a distance between 10−3

and 4 · 10−2 from the interface and for the remaining part of the domain a meshsize of l · 2−5

length units in phase (2) and l · 2−4 length units in phase (1). In preliminary numerical tests, we
verified that the prescribed mesh sizes are well suited to resolve all features of the Marangoni
structures.

The simulations are performed with different sinusoidal interfacial deformations in which
both the periodicity and the amplitude are varied. The corresponding values for K and B are
summarized in Tab. 4. The resulting length LΓ of the interface, as contained in the 4th column of
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Table 4: Overview of performed simulations with different interface curvature (determined by the shifted cosine func-
tion f ). K denotes the amplitude and B the number of periods in the domain (in nondimensional units). LΓ is the
nondimensional length of the interface.

Name K B LΓ

Sim0 0 0 0.3

Sim1 0.0025 1 0.300062

Sim2 0.0025 2 0.300247

Sim4 0.0025 4 0.300985

Sim4b 0.0050 4 0.303910

Sim6 0.0025 6 0.302208

Sim12 0.00025 12 0.300089

the table are calculated with the arc length formula for f

LΓ =

l∫
0

√
1 + f ′(x)2 dx . (24)

3. Results and discussion

3.1. Variation of interfacial curvature: the qualitative picture
The impact of interfacial curvature, in terms of the number of interface periods, onto the

Marangoni convection is examined in Fig. 2. It shows the butanol concentration for Sim0 and
SimB for B = 2, 4, 6 at t = 0.5 and t = 1.0. Looking first onto the reference case of the plane
interface, Fig. 2(a), (b), we observe a reduction of the number of the cells from initially nine
cells at t = 0.5 toward six cells at t = 1.0. This is the result of a coarsening process of the cells,
studied in detail in [14]. Coarsening can be considered as an effective mechanism to reach the
partition equilibrium of the solute since the cells get access to fresh bulk fluid with higher solute
content.

We now compare the simulations of the reference case, Fig. 2(a) (t = 0.5), to the simulations
with two and four periods (Fig. 2(c), (e)). Here, another type of coarsening is observed, namely
assisted by interfacial curvature, during which the originally nine cells (Fig. 2(a)) decrease to
four complete cells in Fig. 2(e). Obviously, weak interfacial curvatures (B = 2 and B = 4) are
also able to force coarsening of the cells. However, stronger curved interfaces inhibit this effect
after a while. Indeed, the roll cell sizes of the four-periodic case, Fig. 2(f), exceed the roll cell
sizes of the six periodic case, Fig. 2(h). We see that interfacial periodicity slaves the further
lateral growth in cell size. The Marangoni cells are in a locked state, detailed later on, which is
achieved when the roll cell sizes reach the size of the concave interface regions.

The flow structure in terms of a zoom into the velocity field in both phases for B = 6 before
and after locking in shown in Fig. 3. For further illustration, we also refer to the correspond-
ing movie in the supplementary material. Fig. 3 documents that the Marangoni inflow regions,
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(a) planar at t = 0.5 (b) planar at t = 1.0

(c) two periods at t = 0.5 (d) two periods at t = 1.0

(e) four periods at t = 0.5 (f) four periods at t = 1.0

(g) six periods at t = 0.5 (h) six periods at t = 1.0

Figure 2: Comparative pictures for the planar case and curved interfaces at t = 0.5 and t = 1.0. The color scale shows
the values of the butanol concentration in layer (2) and Hc(1) in layer (1) with Henry’s number H = 31. The black line
marks the interface.

where the main flow from the bulk impinges on the interface, are located at the convex regions.
Accordingly, the outflow occurs in the concave region. Note that the inflow point, marked with C
in Fig. 3, can move over time, cf. Fig. 3(a) and (b), which was also observed in experiments with
pronounced interfacial curvature [27]. Furthermore, small Marangoni structures occur which are
advected by the main flow. This hierarchy of small- and large-scale flow was already observed
in the simulations for the planar interface (see Fig. 2(a), (b)) and is a known feature of solutal
Marangoni instability [14, 18].
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(a) t = 0.1 (b) t = 0.8

Figure 3: Close up view of velocity fields for six periods at t = 0.1 and t = 0.8. The color illustrates the values of the
butanol concentration in layer (2) and Hc(1) in layer (1) with Henry’s number H = 31. The color scale is identical to
Fig. 2. Arrows illustrate the direction of velocity. The black point marks the large-scale inflow point C mentioned in the
text.

3.2. Evolution of interfacial velocity
We next analyze the evolution of the cellular pattern, as documented by their concentration

fields in Fig. 2, in terms of the squared interfacial velocity

vm(t) =
1
LΓ

∫
Γ

∥∥∥v(2)(x, z, t)
∥∥∥

2 dΓ , (25)

for the differently curved interfaces (see Fig. 4(a)). We first look onto the reference case of the
plane interface. In the diffusive base state, the system is stable with respect to the Marangoni
instability, and vm(t) = 0 until a critical time, tc. At tc ≈ 0.01 the systems becomes unstable and
an exponential growth of unstable modes sets in until saturation is achieved at around t ≈ 0.02.
This is in close analogy to [14].
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Figure 4: In (a): Velocity magnitude with vm defined in Eq. (25) for different interface geometries. All interface curves
have an amplitude of K = 0.0025. In (b): vm for the planar case and for six periods. The first time steps of the simulations
are shown. The perturbation of concentration in both phases is denoted by noise.

On comparing with the curved interfaces, we see similarities for larger times, t > 0.02,
while significant differences appear at early times. First, the stronger interfacial curvature in
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terms of higher values of B, the larger the interfacial velocity at the very beginning. Second, the
minimum separating this initial interfacial flow from the onset of solutal Marangoni instability
is slightly shifted towards larger times for higher B values. To illustrate the impact of interfacial
curvature at the first time steps of the simulations, Fig. 4(b) shows the velocity magnitude with
six periods (high interfacial curvature) compared to simulations with a planar interface. While for
the planar case the first velocity rise connected with the initial perturbations is quickly damped to
values close to zero, it remains at a high level for the strongly curved interface. The influence of
initial perturbation (noise) of the butanol concentration is negligible. This high level of initial
velocity is also seen in Fig. 5(a), (b) by a comparison of the velocity magnitude in both phases
for the planar interface and for six periods on the curved interface. Interfacial curvature causes
immediate flow into the concave regions, while the system is still at rest for the planar case.

(a) planar at t = 0.005

(b) six periods at t = 0.005
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Figure 5: (a) and (b): Comparison of velocity magnitude for two different simulations at the beginning of the process.
(c): Values of c(2) along the interface at t = 0.005 when the concentration equations are solved without advection (v = 0).

The origin of the high level of vm in the systems with curved interfaces becomes readily obvi-
ous upon solving Eqs. (8),(9) for pure diffusion, i.e. v=0. We compare this solution in Fig. 5(c)
with the analytic one, given in [28] for purely diffusive, one-dimensional mass transfer at a pla-
nar interface. Hence, this figure shows the interfacial concentration belonging to the diffusive
base states preceding the cellular patterns in Fig. 2(a) and (g). Note that mass transfer proceeds
from the top to the bottom layer. On comparing Fig. 5(c) with Fig. 2(g) we see that the inter-
facial butanol concentration in the upper layer is higher in the convex compared to the concave
regions. To understand this, imagine the straight concentration isolines, which run parallel to
the plane interface in the diffusive base state preceding Fig. 2(a). In order to adapt to the inter-
facial curvature in Fig. 2(g), these concentration isolines have to bend to follow the sinusoidal
curvature. As a result, the concentration gradient in the lower aqueous layer becomes steeper,
hence mass flux higher, below the concave regions as compared to the convex ones. Thus, inter-
facial concentration at the convex places has to be higher, as shown in Fig. 5(c), while interfacial
tension is lower. Hence, the diffusive base state imposes gradients in interfacial tension instanta-
neously, which drives interfacial convection from the very beginning. The underlying Marangoni
shear stress, Eq. (21), scales with the interfacial curvature. This explains the higher values of vm

in Fig. 4(a) for stronger curved interfaces. Although vm of this initial interfacial flow decreases
with time, this flow interacts with the Marangoni roll cell instability as described in the following
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sections.

3.3. Interface curvature impacts the evolution of structures

Next, we investigate the effect of interface curvature on the evolution of the Marangoni structures.
We will concentrate on a comparison of the planar interface simulation to the curved interface
simulations with six periods and twelve periods. The correlation between the velocity vm and the
remodelling of Marangoni structures due to merging roll cells is illustrated in Fig. 6. For this
purpose, we counted the apparent regions of mixed fluid in the concentration field of phase (2) at
different times, appearing as patches of light color above the interface. This gives the number of
the large-scale structures as the individual regions of mixed fluid are separated by a large-scale
inflow zone while the small-scale cells are not taken into account. We observe a general decrease
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Figure 6: Velocity magnitude vm defined in Eq. (25) for the planar case (a), six periods (b) in blue compared to the
evolution of Marangoni outflow regions in red. The scale of the y-axis on the left side corresponds to the number of
outflow regions (red stars), the scale on the right side corresponds to vm (blue crosses).

in both the number of Marangoni structures and the velocity vm over time for all simulations.
vm at curved interfaces is higher than for the plane interface since an additional forcing due
to the imposed concentration gradients on the interface exists (cf. Fig. 5(c)). In the planar
case, we observe decreasing vm also when no change of the number of Marangoni structures
takes place. Vice versa, the velocity magnitude increases, when remodeling takes place, i.e.,
Marangoni structures arise or merge. For the interface with periodicity B = 6, the number
of Marangoni structures decreases much faster until locking sets in around t = 0.4. Locking is
caused by the concentration differences imposed along the interface due to differences in the mass
transfer between concave and convex regions. The resulting gradients in interfacial tension force
an interfacial flow from the very beginning. This large-scale flow interacts with the emerging
small roll cells of the Marangoni instability and enhances their coarsening with time by the
additional mixing of the near-interface fluid layer. This proceeds until the roll cell size fits in
with the shape of the interface and their in- and outflow regions coincide with the large-scale
flow. The Marangoni cells remain locked within the interfacial periods since further horizontal
growth would imply a motion of the cell boundaries across the convex regions, i.e. across the
right margin of Fig. 1(b). As soon as this happens, the Marangoni cell has to work against the
oppositely directed Marangoni stress imposed by the neighboring period of interfacial curvature.
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This is an unfavorable state which the cell is only able to enter at high Marangoni numbers. In
the case of locking, no further restructuring is possible and one observes a smooth decrease of
mean velocity magnitude over time in Fig. 6(b). Around t = 1, the velocity magnitude vm for the
six periodic case decreases below the values of the planar case.

However, in the experiments for the (cyclohexanol+butanol)/water system in [18, Fig. 2],
it can be seen that two neighboring roll cells are able to fuse across a slightly convex interface
region. Thus, obviously locking can be prevented under certain circumstances. To demonstrate
this numerically, we performed simulations with an interfacial elongation of high periodicity
(B = 12) but small amplitude (K = 0.00025), see Fig. 7. The high value of B leads to a fast
locking already at a small roll cell size, but the effect is weak due to low K. Under these con-
ditions, locking, i.e. equality of the number of cells and the number of interface periods, occurs
in the time interval t ∈ [0.25, 0.5]. It is accompanied with a strongly decreasing fluid veloc-
ity. However, at t ≈ 0.5, locking is overcome and neighboring roll cells fuse. This remodeling
is accompanied by a slight increase in the velocity magnitude. At t ≈ 0.6, a new temporary
equilibrium is reached with eight roll cells.
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Figure 7: (a): Number of outflow regions and interface velocity for twelve periods. (b) and (c): Corresponding butanol
concentration fields illustrating the temporary locking (b) and further remodeling (c).

3.4. Interface curvature increases mass transfer
In this section we address the practical question to which extent interface curvature effects solute
mass transport across the interface. Therefore, we examine the mass of butanol in the lower
phase

mc(t) =
1
LΓ

∫
Ω(1)

c(1)(x, z, t) dΩ(1) , (26)

whereby we scale the integral by LΓ. This ensures comparable results since more solute is
transported over an interface with higher curvature simply due to extended interface length.
Fig. 8(a) displays the ratio mc/m0, where m0 is the result of Eq. (26) for the planar interface
while mc is evaluated for simulations with different numbers of periods B and the fixed ampli-
tude K = 0.0025. The impact of different amplitudes K at fixed number of periods B = 4 is
shown in Fig. 8(b).
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The curves in Fig. 8(a) and Fig. 8(b) show several characteristic features. With onset of
interfacial convection an increase of mc/m0 occurs (all values start at unity for t = 0). The
higher the interfacial curvature (increased by the selection of larger B or K values), the higher
the increase. After achieving a maximum, a decrease occurs. This behavior was also found
in [1] and discussed there in terms of advection and breakdown of the unstable initial pattern.
Afterwards, a slow but steady rise occurs in the phase of coarsening of the Marangoni roll cells
which proceeds here also in close analogy to [1] (see e.g. Fig.28). Furthermore, the curves in in
Fig. 8(a) and Fig. 8(b) display an offset, i.e. they intersect the y-axis at values larger than unity.
In analogy to the previously described increase at the onset of interfacial convection, this offset
increases with larger interfacial curvature. This is the fingerprint of the initial interfacial flow
driven by the curvature.

Finally, solute transport enhancement generally decreases after locking sets in (marked by
black points in Fig. 8), as the growth of Marangoni outflow regions is limited due to the size of
the concave regions.
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Figure 8: Analysis of solute mass transport over the interface. The mass transport ratio mc/m0 refers to the result of
Eq. (26) for the different simulations, relative to the planar case. In (a), the amplitude is fixed to K = 0.0025. In (b), the
number of periods is fixed to B = 4. Black points mark the time where the number of roll cells begin to match with the
number of interface periods (i.e., complete locking).

4. Conclusion

We have investigated the influence of interface curvature on solutal Marangoni convection
of a cyclohexanol/water system with mass transfer of butanol in the Hele-Shaw cell. Using
finite element simulations with periodically curved interfaces, we demonstrate that interfacial
curvature imposes concentration gradients (and therefore surface tension gradients) along the
interface as soon as the mass transfer starts. This leads to enhanced mass transfer and hence an
accelerated evolution of the Marangoni roll cells after their onset.

As soon as the size of Marangoni structures is comparable to the wavelength of interfacial
curvature, a locking effect sets in, i.e., the Marangoni roll cells adapt to the shape of the interface.
While this locking effect can be overcome for small interface curvature, it strongly impedes
further coarsening and can lead to complete fixation of Marangoni structures for larger curvature.

15



The observed evolution impacts the efficiency of mass transfer significantly in comparison to
a planar interface. There is a clear enhancement of mass transfer in the beginning, but locking
effects reduce the transfer rates drastically in later stages.

Even for very small interface curvature, visible differences to the planar case were observed
in the evolution of the Marangoni structures. As real interfaces often are not completely pla-
nar, this may help to understand deviations between experiments and numerical simulations, for
example the accelerated evolution of Marangoni structures that was found in experiments as com-
pared to numerical simulations with a fully planar interface in [18]. Furthermore, these findings
suggest that even slight interfacial deformations caused by the Marangoni flow itself can have a
significant influence on pattern evolution.
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[24] A. Grahn, Two-dimensional numerical simulations of Marangoni-Bénard instabilities during liquid-liquid mass

transfer in a vertical gap, Chemical Engineering Science 61 (11) (2006) 3586 – 3592.
[25] D. A. Bratsun, A. De Wit, On Marangoni convective patterns driven by an exothermic chemical reaction in two-

layer systems, Physics of Fluids 16 (4) (2004) 1082–1096.
[26] S. Vey, A. Voigt, AMDiS: adaptive multidimensional simulations, Computing and Visualization in Science 10 (1)

(2006) 57–67.
[27] Y. Shi, K. Eckert, Orientation-dependent hydrodynamic instabilities from Chemo-Marangoni cells to large scale

interfacial deformations, Chinese J. of Chem. Eng. 15 (2007) 748–753.
[28] J. Crank, The mathematics of diffusion, Clarendon Press, Oxford.

17


