Inelastic scattering of fast neutrons from excited states in 56Fe

R. Schwengner, R. Beyer, A. Junghans, R. Massarczyk

Institut für Strahlenphysik, Helmholtz-Zentrum Dresden-Rossendorf
01314 Dresden, Germany
Setup at nELBE

- Target: cylinder of natural iron diameter 20 mm, thickness 8 mm
- HPGe detector at 125° to the neutron beam and a distance of 20 cm from the target
- Time difference between accelerator pulse and signal of the HPGe detector
 \(\Rightarrow \) time-of-flight of the incident neutrons
 \(\Rightarrow \) time resolution 10 ns
Neutron-scattering cross section

\[\sigma = \frac{N_\gamma(E_n)}{\varepsilon_\gamma \Delta E_n} \cdot \left[\frac{\Phi(E_n)}{\Delta E_\Phi} N_{at} \right]^{-1}. \]

\(N_\gamma(E_n) \) – number of events in the \(\gamma \) peak observed at a neutron energy \(E_n \).
\(\varepsilon_\gamma \) – efficiency of the HPGGe detector.
\(\Delta E_n \) – energy-bin width deduced from the gate width in the time-of-flight spectrum.
\(\Phi(E_n) \) – neutron fluence (time integral over the neutron-flux density) at \(E_n \).
\(\Delta E_\Phi \) – energy-bin width of the neutron fluence.
\(N_{at} \) – number of atoms per target area.
Excited states in 56Fe
Gamma-ray spectra at various neutron energies

\[E_n = 8.168 \text{ MeV} \]
\[E_n = 4.818 \text{ MeV} \]
\[E_n = 1.472 \text{ MeV} \]
Cross section for inelastic scattering from 56Fe

$E_r = 847$ keV
Cross section for inelastic scattering from ^{56}Fe
Cross section for inelastic scattering from 56Fe

![Graph showing cross section for inelastic scattering from 56Fe]
Cross section for inelastic scattering from 56Fe

Cross section for inelastic scattering from 56Fe

$E_\gamma = 1238$ keV

56Fe(n,n')

E_n (MeV) vs. σ (b)
Cross section for inelastic scattering from 56Fe

![Graph showing inelastic scattering cross section for 56Fe](image)

56Fe(n,n')

- $E_\gamma = 1238$ keV
- $E_\gamma = 1038$ keV
- $E_\gamma = 1303$ keV

E_n (MeV) vs σ (b)
Cross section for inelastic scattering from 56Fe

56Fe(n,n')

$E_\gamma = 1238$ keV

4^+_1 state

Cross section for inelastic scattering from 56Fe
Cross section for inelastic scattering from 56Fe

56Fe(n,n')

2^+_1 state

4^+_1 state

6^+_1 state

E_n (MeV)

σ (b)
Cross section for inelastic scattering from 56Fe

![Graph showing cross section for inelastic scattering from 56Fe vs. neutron energy E_n (MeV). The graph includes data points for 56Fe(n,n$'$) with a 2^+_1 state, and a plastic neutron detector and HPGe γ-ray detector.]
Cross section for inelastic scattering from ^{56}Fe

$^{56}\text{Fe}(n,n')$

2^+_1 state

HPGe γ-ray detector

plastic neutron detector

σ (b)

E_n (MeV)
Multiple inelastic scattering from ^{56}Fe

Excitation of 2^+ states in two ^{56}Fe nuclei by one neutron and detection of the two 847 keV γ rays at 125°.
Conclusions

- High-resolution measurement of γ rays from states excited in inelastic neutron scattering.
- Determination of the cross section for individual excited states as a function of the neutron energy.
- Advantage of the measurement of γ rays with an HPGe detector: measurement of the time-of-flight of the scattered neutrons not needed. Disadvantage: time resolution of 10 ns compared with 0.7 ns of the plastic scintillators used for the detection of scattered neutrons.
 ⇒ Fine structures of the cross sections may be washed out.