Electromagnetic excitations in nuclei: from photon scattering to photodisintegration

R. Beyer1, F. Döna1, M. Erhard1, E. Grosse1,2, A. R. Junghans1, K. Kosev1, C. Nair1, N. Nankov1,3, G. Rusev1, K. D. Schilling1, R. Schwengner1, A. Wagner1

1 Institut für Kern- und Hadronenphysik, Forschungszentrum Rossendorf, 01314 Dresden, Germany
2 Institut für Kern- und Teilchenphysik, Technische Universität Dresden, 01062 Dresden, Germany
3 Institute for Nuclear Research and Nuclear Energy, BAS, 1784 Sofia, Bulgaria

- The bremsstrahlung facility
- Photon-scattering experiments
- Photoactivation experiments

Supported by Deutsche Forschungsgemeinschaft
The bremsstrahlung facility at the radiation source ELBE

R.S. et al., NIM A 555 (2005) 211

Accelerator parameters:

- Maximum electron energy: 18 MeV
- Maximum average current: 1 mA
- Micro-pulse rate: 13 MHz
- Micro-pulse length: < 10 ps
Detector setup
Dipole strength close to the particle-separation energy

- Importance for the understanding of astrophysical processes.
 ⇒ Influence on (γ,n) reaction rates for the production of particular neutron-deficient nuclei in the so-called p-process.

- Open problems:
 - The precise knowledge of $E1$ strength on the low-energy tail of the Giant Dipole Resonance
 - The properties of the Pygmy Dipole Resonance, a concentration of $E1$ strength in the energy range between about 5 MeV and 11 MeV.
Nuclides under investigation in photon-scattering experiments

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>S_n (MeV)</th>
<th>E_{e}^{kin} (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{92}Mo</td>
<td>12.7</td>
<td>6.0, 13.2</td>
</tr>
<tr>
<td>^{98}Mo</td>
<td>8.6</td>
<td>3.3a, 3.8a, 13.2</td>
</tr>
<tr>
<td>^{100}Mo</td>
<td>8.3</td>
<td>3.2a, 3.4a, 3.8a, 7.8, 13.2</td>
</tr>
<tr>
<td>^{88}Sr</td>
<td>11.1</td>
<td>6.8b, 9.0, 13.2, 16.0</td>
</tr>
<tr>
<td>^{89}Y</td>
<td>11.5</td>
<td>7.0c, 13.2</td>
</tr>
<tr>
<td>^{90}Zr</td>
<td>12.0</td>
<td>7.0, 9.0, 12.8</td>
</tr>
</tbody>
</table>

ELBE experiment

- a Dynamitron experiment, PRL 95 (2005) 062501
- b S-Dalinac experiment, PRC 70 (2004) 064307
- c S-Dalinac experiment, NPA 620 (1997) 1
Photon scattering from 92Mo, 98Mo and 100Mo

92Mo (γ,γ') $E_e = 13.2$ MeV
$S_n = 12.7$ MeV
$S_p = 7.5$ MeV
345 transitions

98Mo (γ,γ') $E_e = 13.2$ MeV
$S_n = 8.6$ MeV
510 transitions

100Mo (γ,γ') $E_e = 13.2$ MeV
$S_n = 8.3$ MeV
535 transitions
Angular distributions of transitions in 92Mo, 98Mo and 100Mo
Linear polarisations of transitions in 88Sr

$L = 1$: $I_\gamma(90^\circ)/I_\gamma(127^\circ) = 0.73$

$L = 2$: $I_\gamma(90^\circ)/I_\gamma(127^\circ) = 2.28$

Experimental asymmetries of transitions in 88Sr.
Problem of feeding and branching

Measured intensity of a γ transition:

$$I_\gamma(E_\gamma, \Theta) = I_s(E_x) \cdot \Phi_\gamma(E_x) \cdot \epsilon(E_\gamma) \cdot N_{\text{at}} \cdot W(E_\gamma, \Theta) \cdot d\Omega$$

Energy-integrated cross section:

$$I_s = \int \sigma_{\gamma\gamma0} \, dE$$

$$I_s = \frac{2J_x + 1}{2J_0 + 1} \left(\frac{\pi \hbar c}{E_x} \right)^2 \frac{\Gamma_0}{\Gamma} \Gamma_0; \quad \Gamma = \frac{\hbar}{\tau}$$

$E1$ strength:

$$B(E1) \sim \Gamma_0 / E_\gamma^3$$
Unresolved strength in the continuum

\[f_1(E) = \frac{1}{\Delta} \sum_{\Delta} \frac{\Gamma_0}{E^3} \]
Correction of feeding and branching

Simulation of the intensity distribution of ground-state and branching transitions.

Intensity distribution of ground-state transitions after correction for branchings and feedings.

ground-state transitions
branchings
continuum
branchings and feedings corrected continuum

E_γ / MeV

Photon / (100 keV*sr)

98Mo

Forschungszentrum
Rossendorf

Institut für Kern- und Hadronenphysik
Correction of feeding and branching

Simulated distribution of branching ratios $B_0 = \Gamma_0 / \Gamma$.

Absorption cross section $\sigma_\gamma \sim \Gamma_0 / E_\gamma^2$.
Absorption cross sections in ^{92}Mo, ^{98}Mo and ^{100}Mo

(γ,n) - experiment: H. Beil et al., NPA 227 (1974) 427
(γ,p) - theory: T. Rauscher and F.-K. Thielemann, ADNDT 88 (2004) 1
RPA calculations for deformed nuclei

Energy-weighted sum rule from experiments and RPA calculations:

\[EWSR(E_x) = \sum_{i}^{E_x} \sigma(\gamma_i) \Delta E \]
RPA calculations for deformed nuclei

Hamiltonian for 1^- states:
- Nilsson mean field plus monopole pairing
- isoscalar and isovector dipole-dipole and octupole-octupole interactions
F. Dönau, PRL 94 (2005) 092503

Total energy as a function of the quadrupole deformation ε_2 and the triaxiality γ:

$^{92}\text{Mo}_{50}$
$\varepsilon_2 = 0.0$

$^{94}\text{Mo}_{52}$
$\varepsilon_2 = 0.02$

$^{96}\text{Mo}_{54}$
$\varepsilon_2 = 0.10$
$\gamma = 60^\circ$

$^{98}\text{Mo}_{56}$
$\varepsilon_2 = 0.18$
$\gamma = 37^\circ$

$^{100}\text{Mo}_{58}$
$\varepsilon_2 = 0.21$
$\gamma = 32^\circ$

TAC model with shell-correction method
Summary

- Dipole-strength distributions of even-even Mo isotopes studied up to neutron-separation energies at the photon-scattering facility of the ELBE accelerator.
- Simulations of γ cascades from excited levels:
 - Estimate of branchings and feedings.
- The reconstructed dipole-strength distributions connect smoothly with the low-energy tails of the Giant Dipole Resonances.
- RPA calculations in a deformed basis reproduce the dipole-strength distributions in the series of Mo isotopes.
P-nuclei and the \(\gamma \)-process

- 35 p-nuclei from \(^{74}\text{Se} \) to \(^{196}\text{Hg} \) cannot be produced in the s- or r-processes.
- They are produced and destroyed by the p- or \(\gamma \)-process at temperatures of \(T \approx (2 - 3) \cdot 10^9 \) K.
- The \(\gamma \)-process comprises \((\gamma,n)\), \((\gamma,p)\) and \((\gamma,\alpha)\) reactions starting from s- and r-process seed nuclei.
- Abundances of p-nuclei are 10 to 1000 times smaller than those of their neutron-rich isotopes - except for Mo and Ru.
Calculation of abundances of p-nuclei

- The abundances of Mo and Ru are underestimated by network calculations.
- Are the reaction rates correct?

\Rightarrow Study of the photodisintegration of 92Mo

M. Arnould, S. Goriely,
PR 384 (2003) 1
Setup for photoactivation experiments
Setup for photoactivation experiments
Activation yield

Activation yield of the 197Au(γ, n) reaction. The yield is normalised to the number of 197Au atoms and to the absolute photon flux at $E_x = 8921$ keV.

Activation yields of Mo isotopes normalised to the activation yield of the 197Au(γ, n) reaction.

Solid lines: T. Rauscher and F.-K. Thielemann, ADNDT 88 (2004) 1
Summary

- Endpoint energy derived from the photodisintegration of 2H.
- Photon-flux distribution from known widths in 11B.
- Determination of the photon flux in the electron-beam dump by means of the 197Au(γ, n) reaction.
- Rough agreement of the activation yield with theoretical predictions.
- 92Mo(γ, α)88Zr observed for the first time.