Quadrupole moment of the 8^+ yrast state in 84Kr

R. Schwengner1, D. L. Balabanski2, G. Neyens2, N. Benouaret2, D. Borremans2, N. Coulier2, M. De Rydt2, G. Georgiev2, S. Mallion1,2, G. Rainovski1,3, G. Rusev1, S. Teughels2, K. Vyvey2

1 Institut für Strahlenphysik, Forschungszentrum Dresden-Rossendorf, 01314 Dresden, Germany
2 Instituut voor Kern- en Stralingsfysica, Katholieke Universiteit Leuven, 3001 Leuven, Belgium
3 Faculty of Physics, St. Kliment Ohridski University of Sofia, 1164 Sofia, Bulgaria

- Level Mixing Spectroscopy
- Results
- Systematics and interpretation

Supported by the European Commission
Measurement of nuclear moments

- Nuclear moments are very sensitive to the structure of nuclear states.
- Their measurement is a stringent test of nuclear models.
- States with a structure dominated by a few nucleons outside a closed shell are good candidates for tests of predictions of the shell model.
- Effective g factors and effective charges accounting for the influence of orbits not included in the model space may be examined.
Level-mixing spectroscopy

B=0
pure quadrupole interaction

high magnetic field
pure magnetic interaction

Anisotropy
$\frac{N(0^\circ)}{N(90^\circ)}$

B low
intermediate
B high
competition

$\beta = 40^\circ$

$\omega_Q \propto Q s V_{ZZ}$

$\omega_Q \propto \mu B$

By courtesy of D. L. Balabanski and G. Neyens
Level-mixing spectroscopy

B = 0
pure quadrupole interaction

B high
high magnetic field
pure magnetic interaction

Anisotropy
N(0°)/N(90°)

β = 40°

ω_Q ∝ μB

ω_Q ∝ Q_s V_{ZZ}

B low intermediate B high
competition

By courtesy of D. L. Balabanski and G. Neyens
Level-mixing spectroscopy

B=0
pure quadrupole interaction

high magnetic field
pure magnetic interaction

Anisotropy
N(0°)/N(90°)

\[\beta = 40° \]

\[\omega_Q \propto Q_s V_{ZZ} \]
\[\omega_Q \propto \mu B \]

B low intermediate competition B high

By courtesy of D. L. Balabanski and G. Neyens
Quadrupole moments measurements:

the Level-mixing spectrometer

at the CRC

Louvain-la-Neuve, Belgium

By courtesy of D. L. Balabanski and G. Neyens
LEMS experiment for 84Kr

$^{8+}$ yrast isomer:
Energy: $E_x = 3236.2$ keV
Lifetime: $\tau = 2.65(6) \mu$s
Magnetic moment: $\mu = -1.968(16) \mu_N$
Main configuration: $\nu(0g_{9/2}^\text{-2})$

Experiment:
Reaction: 82Se(α,2n) at $E_\alpha = 24$ MeV
Target: 82Se (96 μg/cm2) + Cd (432 μg/cm2) (Host) + Au (154 μg/cm2)
LEMS experiment for 84Kr

Quadrupole moment of the 8^+ yrast isomer: $Q = 36(4)$ efm^2
Shell-model calculations

Configuration space:

\[
\begin{array}{ccc}
\pi & & \nu \\
0g_{9/2} & & 0g_{9/2} \\
1p_{1/2} & & 1p_{1/2} \\
1p_{3/2} & & \text{Core } 66_{28} \text{Ni}_{38}
\end{array}
\]

Two-body matrix elements:

\(\pi\pi\): empirical from fit to \(N=50\) nuclei, \(^{78}\text{Ni}\) core; X. Ji, B.H. Wildenthal, PRC 37 (1988) 1256

\(\pi\nu, \nu\nu\ (0g_{9/2},1p_{1/2})\): emp. from fit to \(N=48,49,50\) nuclei, \(^{88}\text{Sr}\) core; R. Gross, A. Frenkel, NPA 267 (1976) 85

\(\pi\nu\ (\pi 0f_{5/2},\nu 0g_{9/2})\): experimental from transfer reactions; P.C. Li et al., NPA 469 (1987) 393

\(\nu\nu\ (0g_{9/2},1d_{5/2})\): exp. from energies of the multiplet in \(^{88}\text{Sr}\); P.C. Li, W.W. Daehnick, NPA 462 (1987) 26

remaining:
MSDI;
K. Muto et al., PLB 135 (1984) 349

Code: RITSSCHIL
Quadrupole moments of $9/2^+$ and 8^+ states in Kr, Sr and Zr isotopes

SM1: $e_\pi = 1.35 \, e$, $e_\nu = 0.35 \, e$
SM2: $e_\pi = 1.72 \, e$, $e_\nu = 1.44 \, e$
SM1N: $e_\pi = 1.35 \, e$, $e_\nu = 1.00 \, e$

(M.K. Kabadiyski et al., ZPA 343 (1992) 165)
Summary

○ Quadrupole moment of the \(8^+_1\) state in \(^{84}\text{Kr}\) measured for the first time by using the LEMS technique: \(Q = 36(4) \text{ efm}^2\).

○ Experimental quadrupole moment compared with predictions of the shell model. The quadrupole moment is very sensitive to model space and to effective charges.

○ Tendencies of quadrupole moments with changing neutron numbers in \(\text{Kr, Sr and Zr}\) isotopes with \(N = 47 – 49\) are qualitatively reproduced by calculations using common sets of effective charges.

○ The overall agreement between experimental and calculated quadrupole moments of neutron-dominated states in those nuclides is improved with a modified effective charge for neutrons.