Nuclear-structure and nuclear-astrophysics experiments at the superconducting electron accelerator ELBE

R. Schwengner1, F. Dönaun1, M. Erhard1, E. Grosse1,2, A. R. Junghans1, K. Kosev1, C. Nair1, N. Nankov1,3, G. Rusev1, K. D. Schilling1, A. Wagner1

1 Institut für Kern- und Hadronenphysik, FZ Rossendorf, 01314 Dresden, Germany
2 Institut für Kern- und Teilchenphysik, Technische Universität Dresden, 01062 Dresden, Germany
3 Institute for Nuclear Research and Nuclear Energy, BAS, 1784 Sofia, Bulgaria

- The bremsstrahlung facility
- Photon-scattering experiments
- Photoactivation experiments

Supported by the Deutsche Forschungsgemeinschaft
Bremsstrahlung facility at the ELBE accelerator

Accelerator parameters:

- Maximum electron energy: 20 MeV
- Maximum average current: 1 mA
- Micro-pulse rate: 26 or 260 MHz
- Reduction of 26 MHz by factors of 2 to 256
- Macro pulse of 0.1 to 36 ms length with periods of 40 ms to 1 s
Electron-beam line
Simulation of the flux of photons passing the collimator

Simulations with GEANT4:

- Number of photons produced by 10^9 electrons of $E_{e}^{\text{kin}} = 12$ MeV in a cone with an opening angle of 5 mrad as a function of the niobium-radiator thickness.

- Number of photons produced by 10^9 electrons of $E_{e}^{\text{kin}} = 12$ MeV in niobium radiators of different thicknesses as a function of the angle between electron beam and photon.
Niobium radiators:

- Six radiator foils of 16 mm diameter mounted on a water-cooled copper rod
- Thicknesses of 2, 3, 4, 5, 7 and 12.5 μm, corresponding to $2 \cdot 10^{-4}$ to 10^{-3} radiation lengths
- Radiator holder can be moved by a DC motor drive to select a radiator without breaking the vacuum
Detector setup
Beam dump

$E_{\gamma} = 12$ MeV

Photon-beam dump

GEANT3 simulation with 1000 trajectories of 12 MeV photons.
About 0.3 % of the photons are scattered back towards the detectors.
Background measurements

(a) Radiator thickness 4 μm, average beam current 480 μA, 208Pb target of mass 1 g
(b) Radiator thickness 4 μm, average beam current 480 μA, no target
(c) Room background
 • Measuring time 400 min
Measurement of the electron energy via photodisintegration of deuterons

Spectra measured with Si detectors of 300 μm thickness during the irradiation of a deuterated polyethylene film with bremsstrahlung.

Spectrum of incident photons recalculated from the proton spectrum and the cross section for the disintegration of the deuteron.

σ_{dis}: H. Bethe, C. Longmire, Phys. Rev. 77 (1950) 647
Schiff: L.I. Schiff, Phys. Rev. 83 (1951) 252
Production of linearly polarised off-axis bremsstrahlung
Measurement with polarised photons

Degree of polarisation vs. photon energy as deduced from proton spectra.

Experimental asymmetries of transitions in 208Pb.
Photon scattering from ^{208}Pb

$^{208}\text{Pb}(\gamma,\gamma')$

$E_e^{\text{kin}} = 17\ \text{MeV}$

$\Theta = 127^\circ$
Nuclear resonance fluorescence
Photon scattering

Experimental needs:
- Continuous photon spectrum of high intensity
 \[\Rightarrow\text{bremsstrahlung}\]
- Variable end-point energy
 \[\Rightarrow\text{tunable electron energy}\]

Experimental observables:
- Energy of the scattered photons \(\rightarrow E\)
- Intensity of the scattered photons \(\rightarrow \Gamma\)
- Angular distribution of the scattered photons \(\rightarrow J\)
- Polarisation of the scattered photons \(\rightarrow \pi\)
 \[\Rightarrow\text{Compton polarimeter (}E_\gamma < 5 \text{ MeV)}\]
 \[\Rightarrow\text{polarised bremsstrahlung for higher } \gamma \text{ energies}\]
Photon scattering

\[I_\gamma(E_\gamma, \Theta) = \sigma_s(E_i) \cdot \Phi_\gamma(E_i) \cdot \epsilon(E_\gamma) \cdot N_{at} \cdot \frac{d\Omega}{4\pi} \cdot W(E_\gamma, \Theta) \]

\[\frac{\sigma_s(E_i)}{\sigma_s(E_i^B)} = \frac{I_\gamma(E_\gamma, \Theta)}{I_\gamma(E_\gamma^B, \Theta)} \cdot \frac{\epsilon(E_\gamma^B)}{\epsilon(E_\gamma)} \cdot \frac{W(E_\gamma^B, \Theta)}{W(E_\gamma, \Theta)} \cdot \frac{N_{at}^B}{N_{at}} \cdot \frac{\Phi_\gamma(E_i^B)}{\Phi_\gamma(E_i)} \]

\[\sigma_s = g \left(\frac{\pi \hbar c}{E_i} \right)^2 \frac{\Gamma_0 \Gamma_f}{\Gamma}; \quad g = \frac{2J_i + 1}{2J_0 + 1}; \quad \Gamma = \frac{\hbar}{\tau} \]

\[B(E1)_{\uparrow} = g B(E1)_{\downarrow} = 2.866 \cdot 10^{-3} \cdot \frac{\Gamma_0/\text{meV}}{(E_\gamma/\text{MeV})^3} \cdot e^2 \text{fm}^2 \]

\[B(M1)_{\uparrow} = g B(M1)_{\downarrow} = 0.2598 \cdot \frac{\Gamma_0/\text{meV}}{(E_\gamma/\text{MeV})^3} \cdot \mu_N^2 \]

\[B(E2)_{\uparrow} = g B(E2)_{\downarrow} = 6201 \cdot \frac{\Gamma_0/\text{meV}}{(E_\gamma/\text{MeV})^5} \cdot e^2 \text{fm}^4 \]
Nuclides under investigation in photon-scattering experiments

<table>
<thead>
<tr>
<th>nuclide</th>
<th>S_n MeV</th>
<th>E_{e}^{kin} MeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{92}Mo</td>
<td>12.7</td>
<td>6.0, 13.2</td>
</tr>
<tr>
<td>^{98}Mo</td>
<td>8.6</td>
<td>13.2</td>
</tr>
<tr>
<td>^{100}Mo</td>
<td>8.3</td>
<td>7.8, 13.2</td>
</tr>
<tr>
<td>^{88}Sr</td>
<td>11.1</td>
<td>3.2, 3.4, 3.8</td>
</tr>
<tr>
<td>^{90}Zr</td>
<td>12.0</td>
<td>7.0, 9.0</td>
</tr>
</tbody>
</table>

* a Dynamitron experiment, PRL 95 (2005) 062501
* b S-Dalinac experiment, PRC 70 (2004) 064307
M1 strength in even-even Mo isotopes up to 4 MeV

92Mo$_{50}$

$\Sigma B(M1) = 0.56(4) \mu_N^2$

94Mo$_{52}$

$\Sigma B(M1) = 0.67(7) \mu_N^2$

96Mo$_{54}$

$\Sigma B(M1) = 0.47(2) \mu_N^2$

98Mo$_{56}$

$\Sigma B(M1) = 0.74(3) \mu_N^2$

100Mo$_{58}$

$\Sigma B(M1) = 0.98(4) \mu_N^2$

94Mo: C. Fransen et al.,
PRC 67 (2003) 024307

96Mo: C. Fransen et al.,
PRC 70 (2004) 044317
Deformation of even-even Mo isotopes

Total energy as a function of the quadrupole deformation ε_2 and the triaxiality γ:

- 92Mo$_{50}$
 - $\varepsilon_2 = 0.0$
- 94Mo$_{52}$
 - $\varepsilon_2 = 0.02$
- 96Mo$_{54}$
 - $\varepsilon_2 = 0.10$
 - $\gamma = 60^\circ$
- 98Mo$_{56}$
 - $\varepsilon_2 = 0.18$
 - $\gamma = 37^\circ$
- 100Mo$_{58}$
 - $\varepsilon_2 = 0.21$
 - $\gamma = 32^\circ$

TAC model with shell-correction method
M1 strength in even-even Mo isotopes up to 4 MeV

\[\Sigma B(M1)_{\text{EXP}} = 0.56(4) \mu_N^2 \]
\[\Sigma B(M1)_{\text{RPA}} = 0.21 \mu_N^2 \]

\[\Sigma B(M1)_{\text{EXP}} = 0.67(7) \mu_N^2 \]
\[\Sigma B(M1)_{\text{RPA}} = 0.19 \mu_N^2 \]

\[\Sigma B(M1)_{\text{EXP}} = 0.47(2) \mu_N^2 \]
\[\Sigma B(M1)_{\text{RPA}} = 0.58 \mu_N^2 \]

Deformed-RPA calculations
Spin-spin interaction
Suppression of spurious modes
F. Dönau, PRL 94 (2005) 092503
Photon scattering from ^{92}Mo, ^{98}Mo and ^{100}Mo

$^{92}\text{Mo} (\gamma,\gamma^\prime) E_e = 13.2 \text{ MeV}$

$S_n = 12.7 \text{ MeV}$

$S_p = 7.5 \text{ MeV}$

345 transitions

$^{98}\text{Mo} (\gamma,\gamma^\prime) E_e = 13.2 \text{ MeV}$

$S_n = 8.6 \text{ MeV}$

510 transitions

$^{100}\text{Mo} (\gamma,\gamma^\prime) E_e = 13.2 \text{ MeV}$

$S_n = 8.3 \text{ MeV}$

535 transitions
Detection limits

\[p_{DL} = 3 \sqrt{\frac{\eta_P}{\eta_B}} B \]

Angular distributions of transitions in ^{92}Mo, ^{98}Mo and ^{100}Mo

Expected values:

$L = 1$:

$I_\gamma(90^\circ)/I_\gamma(127^\circ) = 0.73$

$L = 2$:

$I_\gamma(90^\circ)/I_\gamma(127^\circ) = 2.28$
E1 strength in 92Mo, 98Mo and 100Mo

The summed $B(E1)$ strength decreases with increasing N/Z.
E1 strength in even-even Mo isotopes and in even-even N = 50 isotones

The summed $B(E1)$ strength decreases with increasing N/Z.

The summed $B(E1)$ strength increases with increasing N/Z.

$\begin{align*}
\sum B(E1) / (e^2 fm^2) \\
\end{align*}$
Unresolved strength in the continuum

\[f_L(E) = \frac{1}{\Delta} \sum \frac{\Gamma_0}{E^3} \]
The summed $B(E1)$ strength decreases with increasing N/Z. The summed $B(E1)$ strength increases with increasing N/Z.

E1 strength in even-even Mo isotopes and in even-even N = 50 isotones
Statistical analysis

Level-spacing distributions for levels with $E > 4$ MeV. The drawn lines represent Wigner distributions.

Distributions of reduced level widths for levels with $E > 4$ MeV. The drawn lines represent Porter-Thomas distributions.
Problem of feeding and branching

Feeding from high-lying states:
→ Determination of the widths Γ from measurements at various energies

Branching to low-lying states:
→ Correction of the strength distribution f_L by using statistical methods:
The branching ratios Γ_f/Γ are calculated by means of Monte Carlo simulations of the decays. Intensities are corrected with calculated branching ratios.

A level scheme of $J = 1$ and 2 states is constructed with a model using the Wigner level-spacing distribution and level densities given by the backshifted Fermi-gas model. The partial decay width is given by:

$$
\Gamma_{if} = \sum_{X,L} y_{XL}^2 (E_i - E_f)^{2L+1} \frac{f_{XL}(E_i - E_f)}{\rho(E_i, J_i^\pi)}
$$
Reconstructed dipole-strength distributions in 92Mo, 98Mo and 100Mo

(γ, n) - experiment:
H. Beil et al.,
NPA 227 (1974) 427

(γ, n) and (γ, p) - theory:
T. Rauscher and
F.-K. Thielemann,
ADNDT 88 (2004) 1

$$E < S_n : \quad f_L(E) = \frac{1}{3(\pi hc)^2} \sum_i \int \frac{\sigma_i^{\text{corr}}}{E_i} dE$$

$$E > S_n : \quad f_L(E) = \frac{1}{3(\pi hc)^2} \left\langle \frac{\sigma_{\gamma,n}(E)}{E} \right\rangle$$
Accumulative E1 strength

$\sum f / 10^{-6} \text{MeV}^3$

E_x / MeV

^{98}Mo

^{100}Mo

(\gamma,\gamma) - not corrected
(\gamma,\gamma) - corrected
RPA
Photon scattering from 88Sr and 90Zr

88Sr(γ,γ') $E_e^{\text{kin}} = 9$ MeV $\theta = 127^0$

90Zr(γ,γ') $E_e^{\text{kin}} = 9$ MeV $\theta = 127^0$
Summary

- Dipole-strength distributions of even-even Mo isotopes have been studied up to the respective neutron-separation energies at the photon-scattering facility of the ELBE accelerator.
- The $M1$ strength distributions up to $E_x < 4$ MeV fragment with increasing deformation, which is qualitatively described by deformed-RPA calculations.
- The total $E1$ strength above 5 MeV decreases with increasing N/Z of the Mo isotopes, which is reproduced by deformed-RPA predictions.
- The total $E1$ strength above 5 MeV increases with increasing N/Z for $N = 50$ isotones.
- The high level density above 5 MeV in connection with feeding by high-lying states and branchings to low-lying states require new techniques in order to reconstruct the original dipole-strength distributions.
- Simulations of the decay of excited levels deliver an estimate of the branchings. The reconstructed dipole-strength distributions fit the low-energy tails of the giant dipole resonances.
P-nuclei and the γ-process

- 35 p-nuclei from 74Se to 196Hg cannot be produced in the s- or r-processes.
- They are produced and destructed by the p- or γ-process at temperatures of $T \approx (2 - 3) \cdot 10^9$ K.
- The γ-process comprises (γ,n), (γ,p) and (γ,α) reactions starting from s- and r-process seed nuclei.
- Abundances of p-nuclei are 10 to 1000 times smaller than those of their neutron-rich isotopes - except for Mo and Ru.
Calculation of abundances of p-nuclei

- The abundances of Mo and Ru are underestimated by network calculations.
- Are the reaction rates correct?

⇒ Study of the photodissociation of 92Mo

M. Arnould, S. Goriely,
PR 384 (2003) 1
Setup for photoactivation experiments
Photoactivation of ^{92}Mo

Photoactivation process
- γ transitions
- Electron capture (EC) and β^+ decay

\[
N_{act}(E_e) = N_{tar} \cdot \int_{E_{thr}}^{E_e} \sigma_{(\gamma,x)} \Phi_\gamma(E, E_e) \, dE
\]

\[
N_{act}(E_e) = I_\gamma(E_\gamma) \cdot \varepsilon^{-1}(E_\gamma) \cdot p^{-1}(E_\gamma) \cdot \kappa_{corr}
\]
Activation yield of the $^{197}\text{Au}(\gamma, n)$ reaction. The yield is normalised to the number of ^{197}Au atoms and to the absolute photon flux at $E_{\gamma} = 8917$ keV.

Activation yields of Mo isotopes normalised to the activation yield of the $^{197}\text{Au}(\gamma, n)$ reaction.

Open symbols:
T. Rauscher and F.-K. Thielemann,
ADNDT 88 (2004) 1
Summary

- Endpoint energy derived from the photodissociation of ^2H.
- Photon-flux distribution deduced from photon scattering from states with known widths in ^{11}B.
- Determination of the photon flux in the electron-beam dump by means of gold targets.
- Determination of the activation yield of the $^{92}\text{Mo}(\gamma, p)^{91m}\text{Nb}$ reaction up to $S_n(^{92}\text{Mo})$ via the decay $^{91m}\text{Nb(EC)} \rightarrow ^{91}\text{Zr} (E_\gamma = 1205 \text{ keV})$.
- Good agreement of the activation yield with theoretical predictions.
- $^{92}\text{Mo}(\gamma, \alpha)^{88}\text{Zr}$ observed for the first time.