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The Spherically Symmetric a*>~dynamo
and Some of its Spectral Peculiarities

U. Gunther, O. N. Kirillov, B. F. Samsonov, F. Stefani

A brief overview is given of recent resulls on the spectral properties of spherically symmetric MHD a-dynamos. In particular, the spectra
of sphere-confined fluid or plasma configurations with physically realistic boundary conditions (BCs) (surrounding vacuum) and
with idealized BCs (super-conducting surrounding) are discussed. The subjects comprise third-order branch points of the spectrum,
self-adjointness of the dynamo operator in a Krein space as well as the resonant unfolding of diabolical points. It is sketched how certain
classes of dynamos with a strongly localized a-profile embedded in a conducting surrounding can be mode decoupled by a diagonalization of
the dynamo operator matrix. A mapping of the dynamo eigenvalue problem to that of a quantum mechanical Hamiltonian with energy
dependent potential is used to oblain qualitative information about the spectral behavior. Links to swpersymmetric Quantum Mechanics and
to the Dirac equation are indicated.

Keywords: MHD dynamo, operator spectrum, Krein space, boundary conditions, supersymmetric Quantum Mechanics, diabolical points,
resonance, KdV soliton potential.

1 Preliminaries In case of BCs compatible with this fundamental sym-
) . metry the operator turns out self-adjoint in a Krein space(®

The magnetic fields of planets, stars and galaxies are
maintained by dynamo effects in conducting fluids or plasmas
[1, 2, 3]. These dynamo effects are caused by a topologically
nontrivial interplay of fluid (plasma) motions and a bal-
anced self-amplification of the magnetic fields — and can be
described within the framework of magnetohydrodynamics
(MHD) [1, 2]. 4
For physically realistic dynamos the coupled system of
Maxwell and Navier-Stokes equations has, in general, to be
solved numerically. For a qualitative understanding of the oc-
curring effects, semi-analytically solvable toy models play an
important role. One of the simplest dynamo models is the
so called aQ-dynamo with a spherically symmetric a-pro-
file) (see, e.g. [2]). For such a dynamo the magnetic field
can be decomposed into poloidal and toroidal components,
expanded over spherical harmonics [2, 4] and unitarily re-
-scaled [5]. As a result, one arrives at a set of mode decoupled
matrix differential eigenvalue problems [2, 4, 5] 60 (b)
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with boundary conditions (BCs) which have to be imposed in E &
dependence on the concrete physical setup and which will be
discussed below. The a-profile describes the net effect of 20 ¢ y
small scale helical turbulence on the magnetic field [2]. It 10 b / / |
can be assumed real-valued a(r) € R and sufficiently smooth. F’ i
We note that the reality of the differential expression (1), in- 0 0 8I{} 90
dependently from the concrete BCs, implies an operator
spectrum which is symmetric with regard to the real axis, i.e. Fig. 1: Real and imaginary components of the ¢-dynamo spec-
which consists of purely real eigenvalues and of complex trum as functions of the scale factor G of an a-profile
. : purely 8 p a(r) = C x(1- 2609 x7r2 + 5364 x7° — 28.22 x7*)
conjugate eigenvalue pairs. in the case of angular mode number / = 1and physically re-
. . . . alistic boundary conditions (3). The concrete coefficients
In [4] it was shown that the differential expression (1) of . . . L
. . in the quartic polynomial «(r) have their origin in nu-
this operator has the fundamental (canonical) symmetry 6, 7] merical simulations of field reversal dynamics (see Ref.
0 I [20, 21]). Only the imaginary components with IA >0
A, =7 9[;], J =[ ] (2) are shown. The symmetrically located complex conjugate
10 31 <0 components are omitted for the sake of brevity.
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(IC], ["']J) [4, 5] and in this way it behaves similar like Hamil-
tonians of P7Z-symmetric Quantum Mechanics (PTSQM)
[9-14].

Subsequently, we first present a sketchy overview of some
recent results on the spectral behavior of aQ-dynarnos ob-
tained in [5, 15-19], which we extend by a discussion of the
transition from a?-dynamo configurations confined in a box

to dynamos living in an unconfined conducting surrounding.

2 Physically realistic BCs and spectral

triple points

For roughly spherically symmetric dynamical systems like
the Earth, the conducting fluid is necessarily confined with-
in the core of the Earth so that the a-effect resulting from
the fluid motion has to be confined to this core. Setting the
surface of the outer core at a radius r =1, one can assume
a(r >1) =0 and a behavior of the magnetic field at r >1like in
a vacuum. A multi-pole-like decay of the magnetic field at
r — oo then leads to mixed effective BCs at r =1 (see, e.g. [2])

and a corresponding operator domain of the type
Dl,) = {u e H = Ly(01)® Ly(O1]u(r\0) = 0, B, =0},

u::[”‘j, 3)
Ug

From the domain D(ng) of the adjoint operator
D) = {ﬁ eH = Ly(01)® Ly(0)|i(r\0) =0, Bii] , =0},
r /1

ﬁ::[ﬁlj , 4)

l
F.— 8r+; -a(r)d, ’
0 1

one reads off that D(Ql;) # D(%,) and, hence, the dynamo
operator itself is not self-adjoint even in a Krein space.

<
nNo

In the case of constant a-profiles and arbitrary [ € N, the
spectrum is implicitly given by a characteristic equation built
from spherical Bessel functions [2]. In all other cases numeri-
cal studies are required. A typical spectral branch graph is
depicted in Fig. 1. Obviously, for the specific a-profile it con-
tains a large number of spectral phase transitions from real
spectral branches to complex ones and back. There are strong
indications that phase transition points (second order branch
points/exceptional points) of the spectrum close to the 1 =0
line play an important role in polarity reversals of the mag-
netic field (see [20-23] for numerical studies and [24] for
recent experiments).

Apart from the second-order branch points visible in
Fig. 1 there may occur third- and higher-order branch points.
They are located on hyper-surfaces of higher co-dimension in
parameter space and they therefore require the tuning of
more parameters to pin them down®. Corresponding re-
sults have been obtained in [16] and are illustrated in Fig. 2.
The triple points result from coalescing second-order branch

( 0.+ L OW points, correspond to 3X3 Jordan blocks in the spectral
%:L "oy J : decomposition of the operator and are accompanied by a
0 1 merging or disconnecting of two complex spectral sectors
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Fig. 2: a®-dynamo with a(r) = C[~(21.465+ 2467¢) + (426.412+167.9285)r% — (806.729 + 436.2890)r° + (392,276 + 272991¢)* ] and a
spectral triple point at (¢ = 0.45, C = 0.86). Highlighted (fat) lines correspond to purely real branches of the spectrum. The cusp in
the imaginary component (lower right graphics) indicates the closely located triple point.
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Fig. 3: The spectral mesh of the operator matrix 2, for [ =0 (a); its resonant deformation due to harmonic perturbations of a con-
stant a-profile (b), (c); the formation of overcritical oscillatory dynamo regimes for ¢ increasing from e¢=0(31=0) to

€=35(RA >0, IA =0 for some branches) (d); and the resonant unfolding of DPs in the complex plane (e), (f).

over the parameter space. An implicit indication of a closely
located triple point is the presence of cusps in the imaginary
components as shown in Figs.1, 2.

3 Idealized BCs and Krein-space
related perturbation theory

In order to gain some deeper insight into possible
dynamo-related processes, semi-analytical toy model consid-
erations play a crucial role. A certain simplification of the
eigenvalue problem was achieved in [17, 18] by considering a
reduced and idealized (auxiliary) problem™® with Dirichlet
BCs imposed at r =1, i.e. by setting u(r =1) =0.

In this case it holds D(2l,) = D(Q[g) and the operator 2,
is self-adjoint in a Krein space (IC], [..-17) [5]. For con-
stant a-profiles a(r) =a( =const the eigenvalue problem
(Qlao —A)u =0 becomes exactly solvable in terms of ortho-
normalized Riccati-Bessel functions

1 2
w, (r) = Nnrzjl%(,/pnr), N, := V2

Jrs(New) ()
(u'm’ un) = (Smn, > Hu’ﬂ H = 1
with p, >0 the squares of Bessel function roots

]l+1§(m) =0.

The solutions of the eigenvalue problem have the form
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1
+
u, = u, € R® Ly(0,1), (6)
n { ’pnj n 2
are Krein space orthonormalized
[ui’ u;ll—] = i2\/p7namn ’ [u’fv ui] =0, (7)

+ +
u, ey ck, u, =ul, k==

and correspond to eigenvalue branches A5, =—p,, + kag+/p,,
which scale linearly with «(. In the (ag, RA)-plane the
branches A}, and 1,, of states u,, , u,, of positive and negative

Krein space type form a spectral mesh (see Fig. 3). The inter-
section points (nodes of the mesh) are semisimple double
eigenvalues, i.e. eigenvalues of geometric and algebraic mul-
tiplicity two — so-called diabolical points (DPs) [26]. Two given
branches A%, (&) and l?,z(ao) intersect at the single point

A :i%::Ké\/pnpm’ aq :a'é::x\/g+6\/p7m,

and we obtain that branches from states of opposite Krein
space type k =-0 intersect for A’ <0, whereas states of

the same type (« =9) intersect at Ay >0. Under small inho-
mogeneous perturbations a(r) = a(, + A a(r) =a{) + € ¢(r) the
diabolical points split A > A% + € A;+... into two real or

complex points (see also [27] for similar considerations) with
leading contribution A; resulting from the quadratic equation
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2 _ll[K[%uﬁ,uﬁ] 8[%11’(2" u,‘z,]]
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+K0 =0,

where
1 Il 1
+
m’ n J. P (K(Svp”pm jumu + umuanV )
0

The unfolding of the DPs follows the typical Krein space
rule. When they result from branches of the same type (k =,
"o >0) then the corresponding DPs unfold purely real-val-
ued, whereas DPs from branches of opposite type (k =—0,
"o <0) may unfold into complex conjugate eigenvalue pairs.
This behavior is clearly shown in Fig. 3b,c. Direct inspection
reveals that the spectral meshes of unperturbed operators
Ay, forl=0and 0 </ < show strong qualitative similari-
ties so that results obtained for the quasi-exactly solvable
[ =0 — model will also qualitatively hold for models with
0 <l < o . Via Fourier expansion of a(r) a very pronounced
resonance has been found along parabolas in the (¢, RA)
- plane indicated by white and colored dots in Fig. 3a — leav-
ing regions away from these parabolas almost unaftected. An
especially pronounced resonance is induced by cosine pertur-
bations which in linear approximation affect only the single
parabola j =2k, Fig. 3b,e. Sine perturbations act strongest on
2k £ m for

increasing m (see Fig. 3¢f). Physically important is the fact

parabolas ‘ J ‘ =2k £ 1with decreasing effect on ‘ yi ‘ =
that higher mode numbers k (shorter wave lengths of the
Aa(r) perturbations) affect more negative RA. Due to a mag-
netic field behavior oc ¢ this is the mathematical formulation
of the physically plausible fact that small-scale perturbations
decay faster than large-scale perturbations. Numerical in-
dications for the importance of this behavior in the subtle
interplay of polarity reversals and so-called excursions
(“aborted” reversals) of the magnetic field have recently been

given in [23].

4 Diagonalizable ¢>-dynamo
operators, SUSYQM and the Dirac
equation

Another approach to obtain quasi-exact solution classes
of the eigenvalue problem (%, —A)u =0 consists in a A-de-
pendent diagonalization of the operator matrix (1). The
basic feature of this technique, as demonstrated in [19], is
a two-step procedure consisting of a gauge transformation
which diagonalizes the kinetic term and a subsequent global

(coordinate-independent) diagonalization of the potential
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term. Such an operator diagonalization is possible for a-pro-

files satisfying the constraint

a'(r) + %a?’(r) —a%a(r) =0 (10)

with @ =const e R a free parameter. Solutions a(r) of this
autonomous differential equation (DE) can be expressed in
terms of elliptic integrals. In order to maximally explore the
similarities to known QM type models® a strongly localized
a-profile has been assumed which smoothly vanishes toward
r — oo. Physically, such a setup can be imagined as a strongly
localized dynamo-maintaining turbulent fluid/plasma motion
embedded in an unbounded conducting surrounding
(plasma) with fixed homogeneous conductivity. The only
a-profile with a(r — ) — 0 satisfying (10) has the form of a

Korteweg-de Vries(KdV)-type one-soliton potential
aty=— 24 (11)
cosh[a(r — )]

This amazing finding points to deep structural links to
KdV and supersymmetric quantum mechanics (SUSYQM)
and opens up a completely new exploration approach to

a? a“-dynamos (6). In [19] we restricted our consideration to the
most elementary solution properties of such models. The
decoupled equation set after a parameter and coordinate
rescaling has been found in terms of two quadratic pencils

o ll+1) 1 o 1_ 2| n _
li—ax‘f' xQ —Ea +§+Ea—€ Fi—O,

2

cosh(x — x)

(12)

a =

in the new variable x:=ar and with new auxiliary spectral pa-
rameter € = (2 /l) The equivalence transformation from
(¥, —A)u =0to (12) is regular fore # 0 and becomes singular
at e =0 where (12) has to be replaced by a Jordan type equa-

tion system

2_ — =
O ax —VO |='0
with potentials Vi =I({ + 1)9672 —%(0{2 -1), V] =—a. In terms

of the original spectral parameter A the eigenvalue problems

(12) read

.
IESET TR T 4 PR
AR

and can be related to the spectral problem of a QM Hamil-

tonian with energy E = -4 and energy-dependent potential
1 1
component ?(% - 1)2 a(x) = J_r(E + %)2 a(x). For physical

reasons asymptotically vanishing field configurations with
Fi(x — 0) >0, Egj(x = ) =0 are of interest. These Di-
richlet BCs at infinity imply the self-adjointness of the opera-

tor 9, in a Krein space K - with (12), (13) as a special
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representation of the eigenvalue problem (2, —A)u =0.
From the structure of (12), (14) it follows that the only free
parameter apart from the angular mode number / € N is the
maximum position x of the a-profile a(x) (the minimum po-

sition of the potential component —a?(x) / 2) so that the solu-

tion branches will be functions 4(x).
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Fig. 4: Spectrae(x() (a) and A(x( ) (b) in the case of angular mode
numbers [ = 0,1, 2, 3. For numerical reasons the Dirichlet
BC has been imposed at the large distance x =100.

With the help of SUSY techniques it has been shown in
[19] that (14) has a single bound state (BS) type solution
which via E =-4 <0 corresponds to an overcritical dynamo
mode A > 0. It has been found that the BS solutions of (14) be-
have differently for xy <x; and xy >x;, where for x5 =x;
the description in terms of (12) breaks down and has to be
replaced by the singular Jordan type representation (13). By a
SUSY inspired factorization ansatz

o II+1) 1 o 1 T
-0y + -—a" +—-=L1L, 15
x 2 o 5 (15)
L=—d +w L'=0,+w, w=%, (16)
u

an equivalence relation between (12) and a system of two

Dirac equations
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has been established for models with xj < x ;. General results
on Dirac equations then allowed for the conclusion that in the
case of xy <x; the bound state related spectrum has to be
real. A perturbation theory with the distance 6 =xp —x;
from the Jordan configuration as a small parameter sup-
plemented by a bootstrap analysis showed that the Dirichlet
BCs Fy(x — ©) — Orender only the solution F, (x) non-trivial
and with a real eigenvalue, whereas F_(x) has to vanish identi-
cally F_(x) =0. The single spectral branch in terms of A(x)
and e(x() 1is depicted in Fig. 4 for angular mode numbers
[=0,1,2,3.
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Fig. 5: Cutoff (X-)dependence of the spectral branches with radial
mode numbers n =1, 2 and angular mode numbers / =0
(a) and [ =2 (b) for cutoffs (box-lengths) X =10, 20, 40.
Clearly visible are the X-independence of the overcritical
BS type modes (n =1) and the tendency 4 OC—I/X2 for
the undercritical (box-type) mode. The modes with n >3
show the same qualitative 4 o —l/X2 behavior as the n = 2

mode and are note depicted here.
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Assuming the dynamo model with strongly localized
a-profile (11), (12) confined in a large box, i.e. with Dirichlet
BCs imposed at large x = X>>0, one can study the dynamo
spectrum in the infinite box limit.

Figs. 5a,b show the corresponding behavior. Due to its lo-
calization the BS-related overcritical dynamo mode is almost
insensitive to the X — oo limit. This is in contrast to the un-
der-critical (decaying) modes which behave as expected for a
sign inverted box spectrum of QM. For fixed mode number
n 22 and X — o the energies £, decrease like E,, o 1/ X2\, 0

and the corresponding part of the spectrum becomes
quasi-continuous and related to the continuous (essential)
spectrum of QM scattering states of a particle moving in the
energy dependent potential

1
il ; D —%aQ(x) Tr(E + %)Qa(x) .

X

For the associated dynamo eigenvalues this implies
Ao —1/X2/0 — as is clearly shown in Figs. 5a,b.

5 Concluding remarks

A brief overview of some recent results on the spectra of
dynamo operators has been given. The obtained structural
teatures like the resonance effects in the unfolding of diaboli-
cal points as well as the unexpected link to KdV soliton poten-
tials, elliptic integrals, SUSYQM and the Dirac equation ap-
pear capable to open new semi-analytical approaches to the
study of a2-dynamos.
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Remarks

1) The a-profile a(x) plays the role of an effective potential
for the a*>-dynamo.

@ For comprehensive discussions of operators in Krein
spaces see, e.g., [6-8].

3 An explicit hyper-surface parametrization of second-
-order branch point configurations embedded in a P7-
symmetric 3 X 3 matrix model with corresponding 2 X 2
Jordan-block preserving modes can be found e.g. in the
recent work [25].

@ From a physical point of view such a2-dynamos can be re-
garded as embedded in a superconducting surrounding.

©) For early comments on structural links between MHD
dynamo models and QM-related eigenvalue problems,
see e.g. [28].

© The question of whether this new class of quasi-exactly
solvable a2—dynam0 models might be structurally re-
lated (via dynamical embedding) to the recently studied
‘PI-symmetrically extended KdV solitons [29, 30] remains
to be clarified.
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