
1 Preliminaries
The magnetic fields of planets, stars and galaxies are

maintained by dynamo effects in conducting fluids or plasmas
[1, 2, 3]. These dynamo effects are caused by a topologically
nontrivial interplay of fluid (plasma) motions and a bal-
anced self-amplification of the magnetic fields – and can be
described within the framework of magnetohydrodynamics
(MHD) [1, 2].

For physically realistic dynamos the coupled system of
Maxwell and Navier-Stokes equations has, in general, to be
solved numerically. For a qualitative understanding of the oc-
curring effects, semi-analytically solvable toy models play an
important role. One of the simplest dynamo models is the
so called �2-dynamo with a spherically symmetric �-pro-
file(1) (see, e.g. [2]). For such a dynamo the magnetic field
can be decomposed into poloidal and toroidal components,
expanded over spherical harmonics [2, 4] and unitarily re-
-scaled [5]. As a result, one arrives at a set of mode decoupled
matrix differential eigenvalue problems [2, 4, 5]
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with boundary conditions (BCs) which have to be imposed in
dependence on the concrete physical setup and which will be
discussed below. The �-profile describes the net effect of
small scale helical turbulence on the magnetic field [2]. It
can be assumed real-valued �( )r �� and sufficiently smooth.
We note that the reality of the differential expression (1), in-
dependently from the concrete BCs, implies an operator
spectrum which is symmetric with regard to the real axis, i.e.
which consists of purely real eigenvalues and of complex
conjugate eigenvalue pairs.

In [4] it was shown that the differential expression (1) of
this operator has the fundamental (canonical) symmetry [6, 7]
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In case of BCs compatible with this fundamental sym-
metry the operator turns out self-adjoint in a Krein space(2)
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Fig. 1: Real and imaginary components of the �2-dynamo spec-
trum as functions of the scale factor C of an �-profile

�( ) ( . . . )r C r r r� � � � 
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in the case of angular mode number l �1and physically re-
alistic boundary conditions (3). The concrete coefficients
in the quartic polynomial �( )r have their origin in nu-
merical simulations of field reversal dynamics (see Ref.
[20, 21]). Only the imaginary components with 
 �� 0
are shown. The symmetrically located complex conjugate

 �� 0 components are omitted for the sake of brevity.



(�J, [.,.]J) [4, 5] and in this way it behaves similar like Hamil-
tonians of ��-symmetric Quantum Mechanics (PTSQM)
[9–14].

Subsequently, we first present a sketchy overview of some
recent results on the spectral behavior of �2-dynamos ob-
tained in [5, 15–19], which we extend by a discussion of the
transition from �2-dynamo configurations confined in a box
to dynamos living in an unconfined conducting surrounding.

2 Physically realistic BCs and spectral
triple points
For roughly spherically symmetric dynamical systems like

the Earth, the conducting fluid is necessarily confined with-
in the core of the Earth so that the �-effect resulting from
the fluid motion has to be confined to this core. Setting the
surface of the outer core at a radius r �1, one can assume
�( )r � �1 0 and a behavior of the magnetic field at r �1like in
a vacuum. A multi-pole-like decay of the magnetic field at
r � � then leads to mixed effective BCs at r �1(see, e.g. [2])
and a corresponding operator domain of the type
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From the domain �( )†A� of the adjoint operator
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one reads off that � �( ) ( )†A A� �� and, hence, the dynamo
operator itself is not self-adjoint even in a Krein space.

In the case of constant �-profiles and arbitrary l ��, the
spectrum is implicitly given by a characteristic equation built
from spherical Bessel functions [2]. In all other cases numeri-
cal studies are required. A typical spectral branch graph is
depicted in Fig. 1. Obviously, for the specific �-profile it con-
tains a large number of spectral phase transitions from real
spectral branches to complex ones and back. There are strong
indications that phase transition points (second order branch
points/exceptional points) of the spectrum close to the � �0
line play an important role in polarity reversals of the mag-
netic field (see [20–23] for numerical studies and [24] for
recent experiments).

Apart from the second-order branch points visible in
Fig. 1 there may occur third- and higher-order branch points.
They are located on hyper-surfaces of higher co-dimension in
parameter space and they therefore require the tuning of
more parameters to pin them down(3). Corresponding re-
sults have been obtained in [16] and are illustrated in Fig. 2.
The triple points result from coalescing second-order branch
points, correspond to 3×3 Jordan blocks in the spectral
decomposition of the operator and are accompanied by a
merging or disconnecting of two complex spectral sectors
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Fig. 2: �2-dynamo with a r C r( ) [ ( . . ) ( . . ) ( .� � 
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. ) ( . . ) ]� �r r and a
spectral triple point at ( . , . )� � �0 45 086C . Highlighted (fat) lines correspond to purely real branches of the spectrum. The cusp in
the imaginary component (lower right graphics) indicates the closely located triple point.



over the parameter space. An implicit indication of a closely
located triple point is the presence of cusps in the imaginary
components as shown in Figs.1, 2.

3 Idealized BCs and Krein-space
related perturbation theory
In order to gain some deeper insight into possible

dynamo-related processes, semi-analytical toy model consid-
erations play a crucial role. A certain simplification of the
eigenvalue problem was achieved in [17, 18] by considering a
reduced and idealized (auxiliary) problem(4) with Dirichlet
BCs imposed at r �1, i.e. by setting u( )r � �1 0.

In this case it holds � �( ) ( )†A A� �� and the operator A�

is self-adjoint in a Krein space ( , [.,. ] )� J J [5]. For con-
stant �-profiles � �( )r � �0 const the eigenvalue problem
( )A u� �

0
0� � becomes exactly solvable in terms of ortho-

normalized Riccati-Bessel functions
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with �n �0 the squares of Bessel function roots
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The solutions of the eigenvalue problem have the form
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are Krein space orthonormalized
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and correspond to eigenvalue branches � � �� ��
n n n� � 
 0

which scale linearly with �0. In the ( , )� �0 � -plane the
branches �n


 and �n
� of states un


 , un
� of positive and negative

Krein space type form a spectral mesh (see Fig. 3). The inter-
section points (nodes of the mesh) are semisimple double
eigenvalues, i.e. eigenvalues of geometric and algebraic mul-
tiplicity two – so-called diabolical points (DPs) [26]. Two given
branches � ��

n ( )0 and � ��
m( )0 intersect at the single point

� � �� � � � � � � � �	 	� � � � 
0 0 0: , :n m n m,

and we obtain that branches from states of opposite Krein
space type � �� � intersect for �	

0 0� , whereas states of

the same type (� �� ) intersect at �	
0 0� . Under small inho-

mogeneous perturbations � � � � 
	 	( ) ( ) ( )r r r� 
 � 
0 0� � the

diabolical points split � � �	 	
0 0 1� �
 
� into two real or

complex points (see also [27] for similar considerations) with
leading contribution �1 resulting from the quadratic equation
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Fig. 3: The spectral mesh of the operator matrix A� for l � 0 (a); its resonant deformation due to harmonic perturbations of a con-
stant �-profile (b), (c); the formation of overcritical oscillatory dynamo regimes for � increasing from � � 
 �0 0( )� to
� � � � 
 �35 0 0( ,� � for some branches) (d); and the resonant unfolding of DPs in the complex plane (e), (f).



� � �
�

�
�

��

� � � �

1
2

1 2 2
� 


�

�
�
�

�

�
	
	




[ , ] [ , ]

[

Bu u Bu u

Bu

n n

n

m m

m

n
� � � � � �

� �

, ][ , ] [ , ]
,

u Bu u Bu un m m n m

n m

�
�

4
0

(8)

where

[ , ]
( )

Bu um n n m m n m n
l l

r
u u u u� � � �� � �� 



�
�
�

�
�
	 
 � ��

 !
"

#$
1

2 dr

0

1

% . (9)

The unfolding of the DPs follows the typical Krein space
rule. When they result from branches of the same type (� �� ,
�	

0 0� ) then the corresponding DPs unfold purely real-val-
ued, whereas DPs from branches of opposite type (� �� � ,
�	

0 0� ) may unfold into complex conjugate eigenvalue pairs.
This behavior is clearly shown in Fig. 3b,c. Direct inspection
reveals that the spectral meshes of unperturbed operators
A�0

for l �0 and 0 � �l � show strong qualitative similari-
ties so that results obtained for the quasi-exactly solvable
l �0 – model will also qualitatively hold for models with
0 � �l � . Via Fourier expansion of �( )r a very pronounced
resonance has been found along parabolas in the ( , )� �0 �

– plane indicated by white and colored dots in Fig. 3a – leav-
ing regions away from these parabolas almost unaffected. An
especially pronounced resonance is induced by cosine pertur-
bations which in linear approximation affect only the single
parabola j k�2 , Fig. 3b,e. Sine perturbations act strongest on
parabolas j k� �2 1with decreasing effect on j k m� �2 for
increasing m (see Fig. 3c,f). Physically important is the fact
that higher mode numbers k (shorter wave lengths of the
��(r) perturbations) affect more negative ��. Due to a mag-
netic field behavior & e t� this is the mathematical formulation
of the physically plausible fact that small-scale perturbations
decay faster than large-scale perturbations. Numerical in-
dications for the importance of this behavior in the subtle
interplay of polarity reversals and so-called excursions
(“aborted” reversals) of the magnetic field have recently been
given in [23].

4 Diagonalizable �
2-dynamo

operators, SUSYQM and the Dirac
equation
Another approach to obtain quasi-exact solution classes

of the eigenvalue problem ( )A u� �� �0 consists in a �-de-
pendent diagonalization of the operator matrix (1). The
basic feature of this technique, as demonstrated in [19], is
a two-step procedure consisting of a gauge transformation
which diagonalizes the kinetic term and a subsequent global
(coordinate-independent) diagonalization of the potential

term. Such an operator diagonalization is possible for �-pro-
files satisfying the constraint

�� 
 � �� � �( ) ( ) ( )r r a r
1
2

03 2 (10)

with a � �const � a free parameter. Solutions �(r) of this
autonomous differential equation (DE) can be expressed in
terms of elliptic integrals. In order to maximally explore the
similarities to known QM type models(5) a strongly localized
�-profile has been assumed which smoothly vanishes toward
r � �. Physically, such a setup can be imagined as a strongly
localized dynamo-maintaining turbulent fluid/plasma motion
embedded in an unbounded conducting surrounding
(plasma) with fixed homogeneous conductivity. The only
�-profile with �( )r � � � 0 satisfying (10) has the form of a
Korteweg-de Vries(KdV)-type one-soliton potential
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This amazing finding points to deep structural links to
KdV and supersymmetric quantum mechanics (SUSYQM)
and opens up a completely new exploration approach to
�2-dynamos (6). In [19] we restricted our consideration to the
most elementary solution properties of such models. The
decoupled equation set after a parameter and coordinate
rescaling has been found in terms of two quadratic pencils
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in the new variable x ar:� and with new auxiliary spectral pa-
rameter � �� � �1

2

1
2� . The equivalence transformation from

( )A u� �� �0 to (12) is regular for � � 0 and becomes singular
at � �0 where (12) has to be replaced by a Jordan type equa-
tion system
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with potentials V l l x0
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of the original spectral parameter � the eigenvalue problems
(12) read
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and can be related to the spectral problem of a QM Hamil-
tonian with energy E � �� and energy-dependent potential

component � � � �� �
1
2

1
2

1
2

1
2� � 
� �� � �� �x E x . For physical

reasons asymptotically vanishing field configurations with
F x� � � �( ) 0, 
0 1 0, ( )x � � � are of interest. These Di-
richlet BCs at infinity imply the self-adjointness of the opera-

tor A� in a Krein space �J – with (12), (13) as a special
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representation of the eigenvalue problem ( )A u� �� �0.
From the structure of (12), (14) it follows that the only free
parameter apart from the angular mode number l �� is the
maximum position x0 of the �-profile �(x) (the minimum po-
sition of the potential component ��2 2( )x ) so that the solu-

tion branches will be functions �( )x0 .

With the help of SUSY techniques it has been shown in
[19] that (14) has a single bound state (BS) type solution
which via E � � �� 0 corresponds to an overcritical dynamo
mode � �0. It has been found that the BS solutions of (14) be-
have differently for x x J0 � and x x J0 � , where for x x J0 �

the description in terms of (12) breaks down and has to be
replaced by the singular Jordan type representation (13). By a
SUSY inspired factorization ansatz
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an equivalence relation between (12) and a system of two
Dirac equations
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has been established for models with x x J0 � . General results
on Dirac equations then allowed for the conclusion that in the
case of x x J0 � the bound state related spectrum has to be
real. A perturbation theory with the distance � � �x x J0
from the Jordan configuration as a small parameter sup-
plemented by a bootstrap analysis showed that the Dirichlet
BCs F x� � � �( ) 0 render only the solution F x
( ) non-trivial
and with a real eigenvalue, whereas F x�( ) has to vanish identi-
cally F x� '( ) 0. The single spectral branch in terms of �( )x0
and �( )x0 is depicted in Fig. 4 for angular mode numbers
l �0 1 2 3, , , .
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Fig. 4: Spectra �( )x0 (a) and �( )x0 (b) in the case of angular mode
numbers l � 0 1 2 3, , , . For numerical reasons the Dirichlet
BC has been imposed at the large distance x �100.

Fig. 5: Cutoff (X-)dependence of the spectral branches with radial
mode numbers n �1 2, and angular mode numbers l � 0
(a) and l � 2 (b) for cutoffs (box-lengths) X �10 20 40, , .
Clearly visible are the X-independence of the overcritical
BS type modes (n �1) and the tendency � & �1 2X for
the undercritical (box-type) mode. The modes with n � 3
show the same qualitative � & �1 2X behavior as the n � 2
mode and are note depicted here.



Assuming the dynamo model with strongly localized
�-profile (11), (12) confined in a large box, i.e. with Dirichlet
BCs imposed at large x X� �0, one can study the dynamo
spectrum in the infinite box limit.

Figs. 5a,b show the corresponding behavior. Due to its lo-
calization the BS-related overcritical dynamo mode is almost
insensitive to the X � � limit. This is in contrast to the un-
der-critical (decaying) modes which behave as expected for a
sign inverted box spectrum of QM. For fixed mode number
n �2 and X � � the energies En decrease like E Xn &1 2� 0
and the corresponding part of the spectrum becomes
quasi-continuous and related to the continuous (essential)
spectrum of QM scattering states of a particle moving in the
energy dependent potential

l l
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x E x
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( ) ( )
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22
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2� �� .

For the associated dynamo eigenvalues this implies
� & �1 2X �0 – as is clearly shown in Figs. 5a,b.

5 Concluding remarks
A brief overview of some recent results on the spectra of

dynamo operators has been given. The obtained structural
features like the resonance effects in the unfolding of diaboli-
cal points as well as the unexpected link to KdV soliton poten-
tials, elliptic integrals, SUSYQM and the Dirac equation ap-
pear capable to open new semi-analytical approaches to the
study of �2-dynamos.

Acknowledgment
The work reviewed here has been supported by the Ger-

man Research Foundation DFG, grant GE 682/12-3 (U.G.), by
the CRDF-BRHE program and the Alexander von Humboldt
Foundation (O.N.K.), as well as by RFBR-06-02-16719 and
SS-5103.2006.2 (B.F.S.).

Remarks
(1) The �-profile �(x) plays the role of an effective potential

for the �2-dynamo.
(2) For comprehensive discussions of operators in Krein

spaces see, e.g., [6–8].
(3) An explicit hyper-surface parametrization of second-

-order branch point configurations embedded in a ��-
symmetric 3×3 matrix model with corresponding 2×2
Jordan-block preserving modes can be found e.g. in the
recent work [25].

(4) From a physical point of view such �2-dynamos can be re-
garded as embedded in a superconducting surrounding.

(5) For early comments on structural links between MHD
dynamo models and QM-related eigenvalue problems,
see e.g. [28].

(6) The question of whether this new class of quasi-exactly
solvable �2-dynamo models might be structurally re-
lated (via dynamical embedding) to the recently studied
��-symmetrically extended KdV solitons [29, 30] remains
to be clarified.
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