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Abstract. Multidimensional cosmological models in the presence of a bare cosmological
constant and a perfect fluid are investigated under dimensional reduction to (D0 = 4)-
dimensional effective models. Stable compactification of the internal spaces is achieved for
a special class of perfect fluids. The external space behaves in accordance with the standard
Friedmann model. Necessary restrictions on the parameters of the models are found to ensure
dynamical behaviour of the external (our) universe in agreement with observations.

PACS numbers: 0450, 9880H

1. Introduction

The large-scale dynamics of the observable part of our present time universe is well
described by the Friedmann model with four-dimensional Friedmann–Robertson–Walker
(FRW) metric. However, it is possible that spacetime at short (Planck) distances might
have a dimensionality of more than four and possess a rather complex topology [1]. String
theory [2] and its recent generalizations—p-brane,M- andF -theory [3, 4] widely use this
concept and give it a new foundation. From this viewpoint, it is natural to generalize the
Friedmann model to multidimensional cosmological models (MCM) with topology [5],

M = R×M0×M1× · · · ×Mn, (1.1)

where for simplicity theMi (i = 0, . . . , n) can be assumed to bedi-dimensional Einstein
spaces.M0 usually denotes the (d0 = 3)-dimensional external space. One of the main
problems in MCM consists in the dynamical process leading from a stage with all dimensions
developing on the same scale to the actual stage of the universe, where we have only
four external dimensions and all internal spaces have to be compactified and contracted to
sufficiently small scales, so that they are apparently unobservable. To make the internal
dimensions unobservable at an actual stage of the universe we have to demand their
contraction to scales near to the Planck lengthLPl ∼ 10−33 cm. Obviously, such a
compactification should be stable. Recently [6], we found a class of MCM possessing
stable compactification of extra dimensions.
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On the other hand, any realistic MCM should provide a dynamical behaviour of the
external spacetime in accordance with the observable universe. The phenomenological
approach with a perfect fluid as a matter source is widely used in usual four-dimensional
cosmology. According to present-day observations, the dynamical behaviour of the universe
after inflation is well described by the standard Friedmann model [7] in the presence of a
perfect fluid. Thus it might be worthwhile to generalize this approach to the description
of the post-inflationary stage in multidimensional cosmological models. It is desirable to
get models where, on one hand, the internal spaces are stably compactified near Planck
scales and, on the other hand, the external universe behaves in accordance with the standard
Friedmann model.

Here we present a toy MCM which shows a principal possibility to reach this goal.
This model is beyond the scope of MCM with stable compactification found in [6]. The
main difference consists in an additional time-dependent term in the effective potential that
provides the needed dynamical behaviour of the external spacetime. This term is induced by
a special type of fine tuning of the parameters of a multicomponent perfect fluid. Although
such a fine tuning is a strong restriction on the matter content of the model, many important
cases of physical interest are described by this class of perfect fluid. We note that a similar
class of perfect fluids was considered in [8], where MCMs were integrated in the case of an
absent cosmological constant and Ricci-flat internal spaces. As a result particular solutions
with static internal spaces had been obtained. According to section 4 of the present paper
these solutions are not stable and a bare cosmological constant and internal spaces with
non-vanishing curvature are necessary conditions for their stabilization. Here we show that
with the help of suitably chosen parameters the model can be further improved to solve
two problems simultaneously. First, the internal spaces undergo stable compactification.
Second, the external space behaves in accordance with the standard Friedmann model.

The paper is organized as follows. In section 2, the general description of the considered
model is given. In section 3, the effective potential is obtained under dimensional reduction
to aD0-dimensional (usuallyD0 = 4) effective theory in the Einstein frame. The problem
of stable compactification is investigated in section 4 for a toy model with suitably chosen
parameters. Here, it is shown that the external universe behaves as the standard Friedmann
model. Conclusions and references complete the paper.

2. General description of the model

We consider a multidimensional cosmological model on a manifold (1.1) in the presence of
a perfect fluid and a bare cosmological constant3. The metric of the model is parametrized
as

g = gMN dXM ⊗ dXN = −exp [2γ (τ)] dτ ⊗ dτ +
n∑
i=0

exp
[
2βi(τ )

]
g(i). (2.1)

ManifoldsMi with the metricsg(i) are Einstein spaces of dimensiondi , i.e.

Rmn
[
g(i)

] = λig(i)mn, m, n = 1, . . . , di (2.2)

and

R
[
g(i)

] = λidi ≡ Ri. (2.3)
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In the case of constant curvature spaces parametersλi are normalized asλi = ki(di − 1)
with ki = ±1, 0. The scalar curvature corresponding to the metric (2.1) reads

R =
n∑
i=0

Ri exp
(−2βi

)+ exp(−2γ )
n∑
i=0

di

[
2β̈i − 2γ̇ β̇i + (β̇i)2+ β̇i

n∑
j=0

dj β̇
j

]
. (2.4)

Matter fields we take into account in a phenomenological way as am-component perfect
fluid with energy–momentum tensor

T MN =
m∑
a=1

T (a)
M

N , (2.5)

T (a)
M

N = diag
(−ρ(a)(τ ), P (a)0 (τ ), . . . , P

(a)

0 (τ )︸ ︷︷ ︸
d0 times

, . . . , P (a)n (τ ), . . . , P (a)n (τ )︸ ︷︷ ︸
dn times

)
(2.6)

and equations of state

P
(a)
i =

(
α
(a)
i − 1

)
ρ(a), i = 0, . . . , n, a = 1, . . . , m. (2.7)

It is easy to see that physical values ofα
(a)
i according to−ρ(a) 6 P (a)i 6 ρ(a) run the region

06 α(a)i 6 2. The conservation equations we impose on each component separately

T (a)
M

N;M = 0. (2.8)

Denoting by an overdot differentiation with respect to timeτ , these equations read for the
tensors (2.6)

ρ̇(a) +
n∑
i=0

diβ̇
i
(
ρ(a) + P (a)i

) = 0 (2.9)

and have according to (2.7) the simple integrals

ρ(a)(τ ) = A(a)
n∏
i=0

a
−diα(a)i
i , (2.10)

where ai ≡ eβ
i

are scale factors ofMi and A(a) are constants of integration. It is not
difficult to verify that the Einstein equations with the energy–momentum tensor (2.5)–(2.10)
are equivalent to the Euler–Lagrange equations for the Lagrangian [9, 10]

L = 1
2e−γ+γ0Gij β̇

i β̇j − eγ+γ0

(
− 1

2

n∑
i=0

Rie
−2βi + κ2

m∑
a=1

ρ(a) +3
)
. (2.11)

Here we use the notationγ0 =
∑n

0 diβ
i , 3 is a cosmological constant andκ2 is a(

D =∑n
0 di+1

)
-dimensional gravitational constant. The components of the minisuperspace

metric read [5]

Gij = diδij − didj . (2.12)

The Lagrangian (2.11) can be obtained by dimensional reduction of the action

S = 1

2κ2

∫
M

dDx
√
|g|{R[g] − 23} −

∫
M

dDx
√
|g|ρ + SYGH = µ

κ2

∫
dτ L. (2.13)

SYGH is the standard York–Gibbons–Hawking boundary term andµ = ∏n
i=0Vi , whereVi

is the volume ofMi (with unit scale factors):Vi = vol(Mi) =
∫
Mi

ddi y
√∣∣g(i)∣∣.
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3. The effective potential

Let us slightly generalize this model to the inhomogeneous case supposing that the scale
factorsβi = βi(x) (i = 0, . . . , n) are functions of the coordinatesx, wherex are defined on
theD0 = (1+ d0)-dimensional external spacetime manifold̄M0 = R×M0 with the metric

ḡ(0) = ḡ(0)µν dxµ ⊗ dxν = −e2γ dτ 2+ e2β0(x)g(0). (3.1)

After conformal transformation of the external spacetime metric from the Brans–Dicke to
the Einstein frame:

g = gMN dXM ⊗ dXN = ḡ(0) +
n∑
i=1

exp
[
2βi(x)

]
g(i)

= �2g̃(0) +
n∑
i=1

exp
[
2βi(x)

]
g(i), (3.2)

where

�2 =
( n∏
i=1

ediβ
i

)−2/(D0−2)

, (3.3)

the dimensionally reduced action (2.13) reads

S = 1

2κ2
0

∫
M̄0

dD0x

√∣∣g̃(0)∣∣{R̃[g̃(0)]− Ḡij g̃
(0)µν∂µβ

i∂νβ
j − 2Ueff

}
, (3.4)

whereκ2
0 = κ2/VI is theD0-dimensional gravitational constant,VI =

∏n
i=1Vi , Ḡij is the

midisuperspace metric with the components

Ḡij = diδij + 1

D0− 2
didj , i, j = 1, . . . , n (3.5)

and the effective potentialUeff reads

Ueff =
( n∏
i=1

ediβ
i

)−2/(D0−2)[
−1

2

n∑
i=1

Rie
−2βi +3+ κ2

m∑
a=1

ρ(a)
]
. (3.6)

The effective action (3.4) has the form of a usual four-dimensional (ifd0 = 3) theory and
describes a self-gravitatingσ -model with self-interaction. The internal scale factors play
the role of scalar fields (dilatons in the starting Brans–Dicke frame) satisfying the wave
equation

Ḡij�βj ≡ 1√∣∣g̃(0)∣∣∂µ
(√∣∣g̃(0)∣∣Ḡij g̃

(0)µν∂νβ
j
) = ∂Ueff

∂βi
. (3.7)

In the Einstein frame the theory assumes the most natural form [11, 12] and beginning from
this point the external spacetime metricg̃(0) is considered as the physical one. For this
metric we adopt following ansatz:

g̃(0) = �−2ḡ(0) = g̃(0)µν dxµ ⊗ dxν = −e2γ̃ dτ̃ ⊗ dτ̃ + e2β̃0(x)g(0). (3.8)

Thus external scale factors in the Brans–Dicke framea0 = eβ
0 ≡ a and in the Einstein

frame ã0 = eβ̃
0 ≡ ã are connected with each other by the relation

a =
( n∏
i=1

ediβ
i

)−1/(D0−2)

ã. (3.9)
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The energy densitiesρ(a) of the perfect-fluid components are given by (2.10) and with the
help of relation (3.9) can be rewritten as

ρ(a) = ρ(a)0

n∏
i=1

a
−ξ (a)i

i , (3.10)

where

ρ
(a)

0 = A(a)
1

ãα
(a)
0 d0

(3.11)

and

ξ
(a)
i = di

(
α
(a)
i −

α
(a)

0 d0

d0− 1

)
. (3.12)

In the case of one internal space (n = 1) the action and the effective potential are,
respectively,

S = 1

2κ2
0

∫
M̄0

dD0x

√∣∣g̃(0)∣∣{R̃[g̃(0)]− g̃(0)µν∂µϕ ∂νϕ − 2Ueff
}

(3.13)

and

Ueff = e2ϕ[d1/(D−2)(D0−2)]1/2[− 1
2R1e2ϕ[(D0−2)/d1(D−2)]1/2 +3+ κ2ρ(ã, ϕ)

]
, (3.14)

where we redefined the dilaton field as

ϕ ≡ −
√
d1(D − 2)

D0− 2
β1. (3.15)

Let us split the scalar fieldsβi(x) in equations (3.4) and (3.6) into a background
componentβ̄i(x) and a small perturbational (fluctuation) componentηi(x)

βi(x) = β̄i(x)+ ηi(x). (3.16)

Assuming that such a splitting procedure is well defined we get the corresponding equations
of motion from (3.7) as

�β̄i = [Ḡ−1
]ij
bj (β̄) (3.17)

and

�ηi = [Ḡ−1
]ij
ajk(β̄)η

k, (3.18)

where

aij := ∂2Ueff

∂βi∂βj
, bi := ∂Ueff

∂βi
. (3.19)

With the help of an appropriate background dependingSO(n)-rotation S = S(β̄) we can
diagonalize matrix

[
Ḡ−1A

]i
k
≡ [Ḡ−1

]ij
ajk(β̄) and rewrite (3.18) in terms of normal modes

ψ = S−1η:

g̃(0)µνDµDνψ = S−1Ḡ−1ASψ
def= M2ψ, (3.20)

whereM2 is a background depending diagonal mass matrix

M2 = diag
[
m2

1(β̄), . . . , m
2
n(β̄)

]
. (3.21)

Dµ denotes a covariant derivative

Dµ := ∂µ + 0µ + Aµ, Aµ := S−1∂µS (3.22)
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with 0µ +Aµ as a connection on the fibre bundleE
(
M̄0,RD0 ⊕Rn) consisting of the base

manifold M̄0 and vector spacesRD0
x ⊕ Rnx = TxM̄0 ⊕

{(
η1(x), . . . , ηn(x)

)}
as fibres. So,

the background components̄βi(x) via the effective potentialUeff and its Hessianaij play
the role of a medium for the fluctuational componentsψi(x). Propagating inM̄0 filled with
this medium the excitational modes (gravitational excitons [6]) change their masses as well
as the direction of their ‘polarization’ defined by the unit vector in the fibre space

ξ(x) := ψ(x)

|ψ(x)| ∈ S
n−1 ⊂ Rn, (3.23)

whereSn−1 denotes the(n − 1)-dimensional sphere. For considerations on interactions of
gravitational excitons with gauge fields and corresponding observable effects we refer to
[13].

We note that in the general case, whenm2
i (β̄) 6= m2

j (β̄), i 6= j , due to the lack of
SO(n) invariance of (3.20) the connectionAµ itself cannot be interpreted as aSO(n)
gauge connection in pure gauge. This is only possible forM2 = m2

exciIn, with In the unit
matrix. Then a transformation

U : ψ 7→ ψ̃ = Uψ
Aµ 7→ Ãµ = UAµU−1− (∂µU)U−1

Dµ 7→ D̃µ = ∂µ + 0µ + Ãµ
Dµψ 7→ D̃µψ̃ = UDµψ

(3.24)

leaves (3.20) invariant due toM2 7→ M̃2 = UM2U−1 = M2, andU is indeed a gauge
transformation.

Further, from (3.20) it is clear that a consideration of the excitational modes makes only
sense if the characteristic spacetime scalesLβ̄ andLψ of the variations of the background
fields β̄i and the excitonsψi are of different order:Lβ̄ � Lψ . (Otherwise non-perturbative
techniques should be applied.) Covering the external spacetime with domains�c of
intermedium characteristic lengthLc ≈ |�c|1/(d0+1), Lβ̄ � Lc � Lψ we can in a crude
approximation replace the background fieldsβ̄i(x) in �c by constantsβ̄ic. According to
(3.17), (3.20) and due to the regularity of the midisuperspace metricḠij this implies an
extremum condition on the effective potential in�c

∂Ueff

∂βi

∣∣∣∣ Eβc = 0, (3.25)

as well as a vanishing connectionAµ = 0 and the constancy of matrixM2. The only
extremum that provides the constancy ofβ̄ic under perturbationsψi is a minimum and the
exciton masses must be non-negativem2

(c)i := m2
i (β̄c) > 0 with at least one of them strictly

positive. (The case ofm2
(c)i = 0,m2

(c)j > 0 for somei, j corresponds to degenerate minima,
as, for example, given in Sombrero-like potentials. The massless modes are similar to
Goldstone bosons.)

Models with constant background fields on�c = M̄0 and with effective potentials
Ueff depending only on the internal scale factors have been considered in [6, 14]. The
corresponding action functional reads in this case

S = 1

2κ2
0

∫
M̄0

dD0x

√∣∣g̃(0)∣∣{R̃[g̃(0)]− 23(c)eff

}
+

n∑
i=1

1
2

∫
M̄0

dD0x

√∣∣g̃(0)∣∣{−g̃(0)µνψi
,µψ

i
,ν −m2

(c)iψ
iψi

}
, (3.26)
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where the effective cosmological constant3(c)eff is connected with the stable
compactification positiona(c)i = expβ̄ic by the relation3(c)eff ≡ Ueff ( Eβc). From a physical
point of view it is clear that the effective potential should satisfy following conditions:

(i) a(c)i & LPl,
(ii) m(c)i 6 MPl,

(iii) 3(c)eff → 0.

The first condition expresses the fact that the internal spaces should be unobservable at the
present time and stable against quantum gravitational fluctuations. This condition ensures the
applicability of the classical gravitational equations near positions of minima of the effective
potential. The second condition means that the curvature of the effective potential should be
less than the Planckian one. Of course, gravitational excitons can be excited at the present
time if mi � MPl . The third condition reflects the fact that the cosmological constant
at the present time is very small:|3| 6 10−56 cm−2 ≈ 10−1213Pl where3Pl = L−2

P l .
Strictly speaking, in the case that the potential has several minima(c > 1) we can demand
a(c)i ∼ LPl and3(c)eff → 0 only for one of the minima to which the present state of the
universe corresponds. For all other minima it may bea(c)i � LPl and |3(c)eff | � 0.

4. The model

A general analysis of the internal spaces stable compactification for MCM with the perfect
fluid (2.10) is carried out in our paper [15]. In the present paper we investigate a particular
class of effective potentials (3.6) with separating scale factor contributions from internal
and external factor spaces

Ueff =
( n∏
i=1

ediβ
i

)−2/(D0−2)[
− 1

2

n∑
i=1

Rie
−2βi +3

]
︸ ︷︷ ︸

Uint

+ κ2
m∑
a=1

ρ
(a)

0︸ ︷︷ ︸
Uext

. (4.1)

We will show below, that such a separation, on the one hand, provides a stable
compactification of the internal factor spaces due to a minimum of the first termUint =
Uint

(
β1, . . . , βn

)
as well as a dynamical behaviour of the external factor space due to

Uext = Uext
(
β̃0
)
. On the other hand, this separation crucially simplifies the calculations and

allows an exact analysis. The price that we have to pay for the separation is a fine tuning
of the parameters of the multicomponent perfect fluid

α
(a)

0 =
2

d0
+ d0− 1

d0
α(a)

α
(a)
i = α(a), i = 1, . . . , n, a = 1, . . . , m.

(4.2)

Only in this case we have

ξ
(a)
i = −

2di
d0− 1

(4.3)

yielding the compensation of the exponential prefactor for the perfect-fluid term in the
effective potential (3.6). The corresponding componentsρ

(a)

0 read, respectively,

ρ
(a)

0 = A(a)
1

ã2+(d0−1)α(a)
. (4.4)

Although the fine tuning (4.2) is a strong restriction, there exist some important particular
models that belong to this class of multicomponent perfect fluids. For example, ifα(a) = 1
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the ath component of the perfect fluid describes radiation in the spaceM0 and dust in the
spacesM1, . . . ,Mn. This kind of perfect fluid satisfies the condition

∑n
i=0 diα

(a)
i = D

and is called super-radiation [16]. Ifα(a) = 2 we obtain the ultra-stiff matter in all
Mi (i = 0, . . . , n) which is equivalent, for example, to a massless minimally coupled free
scalar field. In the case whereα(a) = 0 we get the equation of stateP (a)0 = [(2−d0)/d0]ρ(a)

in the external spaceM0 which describes a gas of cosmic strings ifd0 = 3: P (a) = − 1
3ρ

(a)

[17] and vacuum in the internal spacesM1, . . . ,Mn. If α(a) = 1
2 andd0 = 3 we obtain dust

in the external spaceM0 and a matter with equation of stateP (a)i = − 1
2ρ

(a) in the internal
spacesMi , i = 1, . . . , n.

Let us first consider the conditions for the existence of a minimum of the potential
Uint

(
β1, . . . , βn

)
. According to [14] potentialsUint of type (4.1) have a single minimum if

the bare cosmological constant and the curvature scalars of the internal spaces are negative
Ri,3 < 0. The scale factors

{
βic
}n
i=1 at the minimum position of the effective potential are

connected by a fine-tuning condition

Ri

di
e−2βic = 23

D − 2
≡ C̃, i = 1, . . . , n (4.5)

and the masses squared of the corresponding gravitational excitons are degenerate and given
as

m2
1 = · · · = m2

n = m2
exci = −

43

D − 2
exp

[
− 2

d0− 1

n∑
i=1

diβ
i
c

]

= 2|C̃|(D−2)/(d0−1)
n∏
i=1

∣∣∣∣ diRi
∣∣∣∣di/(d0−1)

. (4.6)

Further, it was shown in [14] that the value of the potentialUint at the minimum is connected
with the exciton mass by the relation

3int := Uint
(
β1
c , . . . , β

n
c

) = −d0− 1

4
m2
exci . (4.7)

From equations (4.5) and (4.6) we see that exciton masses and minimum position
a(c)i = expβ̄ic are constants that depend solely on the value of the bare cosmological
constant3, the (constant) curvature scalarsRi and dimensionsdi of the internal factor
spaces. This means that we have automatically�c = M̄0 from the very onset of the model.
Hence the exciton approach in the present linear form breaks down only when the excitations
become too strong so that higher-order terms must be included in the consideration or the
phenomenological perfect-fluid approximation itself becomes inapplicable.

Let us now turn to the dynamical behaviour of the external factor space. For
simplicity we consider the zero-order approximation, when all excitations are frozen, in
the homogeneous case:γ̃ = γ̃ (τ̃ ) and β̃ = β̃(τ̃ ). Then the action functional (3.26) with

U(c)eff ≡ Ueff [ Eβc, β̃(τ̃ )] = Uint
(
β1
c , . . . , β

n
c

)+ Uext [β̃(τ̃ )] ≡ 3int + ρ̄0(τ̃ ) (4.8)

after dimensional reduction reads

S = 1

2κ2
0

∫
M̄0

dD0x

√∣∣g̃(0)∣∣{R̃[g̃(0)]− 2U(c)eff
}

= V0

2κ2
0

∫
dτ̃

{
eγ̃+d0β̃e−2β̃R

[
g(0)

]+ d0(1− d0)e
−γ̃+d0β̃

(
dβ̃

dτ̃

)2

− 2eγ̃+d0β̃ (3int + ρ̄0)

}
+ V0

2κ2
0

d0

∫
dτ̃

d

dτ̃

(
e−γ̃+d0β̃

dβ̃

dτ̃

)
, (4.9)



Multidimensional perfect-fluid cosmology 2033

where usuallyR
[
g(0)

] = kd0(d0 − 1), k = ±1, 0. The constraint equation∂L/∂γ̃ = 0 in
the synchronous time gaugẽγ = 0 yields(

1

ã

dã

dt̃

)2

= − k
ã2
+ 2

d0(d0− 1)
(3int + ρ̄0(ã)), (4.10)

which results in

t̃ + constant=
∫

dã[−k+(23int/d0(d0− 1))ã2+(2κ2/d0(d0− 1)
)∑m

a=1A
(a)/ã(d0−1)α(a)

]1/2 ,

=
∫

dã[−k + 1
33int ã2+ 1

3κ
2
∑m

a=1A
(a)/ã2α(a)

]1/2 , (4.11)

where in the last line we putd0 = 3.
Thus, in the zero-order approximation we arrived at a Friedmann model in the presence

of a negative cosmological constant3int and a multicomponent perfect fluid. The perfect
fluid has the form of a gas of cosmic strings forα(a) = 0, dust forα(a) = 1

2 and radiation
for α(a) = 1. As 06 α(a) 6 2, the cosmological constant plays a role only for largeã and
because of the negative sign of3int the universe has a turning point at the maximum ofã.
To be consistent with present time observation we should take

|3int | 6 10−1213Pl. (4.12)

We note that due to (4.11) and in contrast with (3.26) the minimum valueU(c)eff of the
effective potential in (4.8) cannot be interpreted as a cosmological constant, even as a time-
dependent one. Coming back to the gravitational excitons we see that according to (4.7)
the upper bound (4.12) on the effective cosmological constant leads to ultra-light particles
with massmexci 6 10−60MPl ∼ 10−32 eV. This is much less than the cosmic background
radiation temperature at the present timeT0 ∼ 10−4 eV. It is clear that up to the present
time such light particles behave as radiation and can be taken into account as an additional
term ρr = κ2

0Ar/3ã
2 in (4.11). It can be easily seen that we reconstruct the standard

scenario if we consider the one-component(m = 1) case withα(1) = 1
2, κ2A(1) ∼ 1061

and κ2
0Ar ∼ 10117. Here we have at early stages a radiation-dominated universe and a

dust-dominated universe at later stages of its evolution.
For completeness we note that via equations (4.6) and (4.7) the value of the effective

cosmological constant has a crucial influence on the relation between the compactification
scales of the internal factor spaces and their dimensions. In the case of only one internal
negative curvature spaceM1 = Hd1/0 with R1 = −d1(d1 − 1) and compactification scale
a(c)1 = 10LPl we have, for example, the relation [14]3int = −(d1 − 1)10−2(d1+2)LP l , so
that the bound (4.12) implies a dimension of this space of at leastd1 = 59. Taking instead
of one internal space a set of two-dimensional hyperbolicg-tori

{
Mi = H 2/0

}n
i=1 [18] with

compactification scalea(c)i = 102LPl it is easy to check [14] that we need at leastn = 29
such spaces to satisfy (4.12).

Of course, other values of the cosmological constant lead to other exciton masses and
compactification–dimensionality relations. So, it is also possible to get models with much
heavier gravitational excitons. For3int = −10−83Pl we have, for example,m = 10−4MPl

and the excitons are very heavy particles that should be considered as cold dark matter.
If we take the one-component caseα(1) = 1 we get at early times a radiation-dominated
universe with a smooth transition to a cold dark-matter-dominated universe at later stages.
But for this example it is necessary to introduce a mechanism that provides a reduction of
the huge cosmological constant to the observable value 10−1213Pl .
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5. Conclusion

In the present paper we considered multidimensional cosmological models (MCM) with a
bare cosmological constant and a perfect fluid as a matter source. It can be easily seen
that there are only two classes of perfect fluids with stably compactified internal spaces.
These kind of solutions are of utmost interest because an absence of a time variation of
the fundamental constants in experiments [19, 20] shows that at the present time the extra
dimensions, if they exist, should be static or nearly static.

The first class (see [6, 14]) consists of models withα(a)0 = 0. It leads to the vacuum
equation of state in the external spaceM0. All other α(a)i (i = 1, . . . , n) can take arbitrary
values. This model can be used for a phemenological description of a multidimensional
inflationary universe with smooth transition to a matter-dominated stage.

In the present paper we found a second class of perfect-fluid models with stable internal
spaces. For these models the stability is induced by a fine tuning of the equation of state of
the perfect fluid in the external and internal spaces (4.2). This class includes many important
particular models and allows considerations of perfect fluids with different equations of
state in the external space, among them also those that result in a Friedmann-like dynamics.
Thus, this class of models can be applied for the description of the post-inflationary stage
in multidimensional cosmology. For the models considered we found necessary restrictions
on the parameters which, on one hand, ensure stable compactification of the internal spaces
near the Planck length and, on the other hand, guarantee dynamical behaviour of the external
(our) universe in accordance with the standard scenario for the Friedmann model.

This toy model gives a promising example of a multidimensional cosmological model
which is not in contradiction with observations. Although, fine tuning is necessary to
get an effective cosmological constant in accordance with the present-day observations. An
interesting example of four-dimensional theories was presented in the recent papers [21, 22].
Here, the authors construct a metric-affine-measure theory to allow the integration measure
in the action functional to be determined dynamically. With this approach they obtain an
effective scalar field potential with zero minimum which needs no fine tuning of the original
scalar field potential. One of the main differences between this theory and our effective
four-dimensional model consists in the fact that in the latter case the scalar field is not an
arbitrary matter field but has a pure geometrical nature (the scalar field is proportional to
the logarithm of the internal scale factor) and its effective potential is determined uniquely
by the form of the higher-dimensional action.
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