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Pseudo-Hermiticity as a generalization of usual Hermiticity is a rather common feature of
(differential) operators emerging in various physical setups. Examples are Hamiltonians of
PT- and CPT-symmetric quantum mechanical systems [1] as well as the operator of the
spherically symmetric α2-dynamo [2] in magnetohydrodynamics (MHD). In order to solve
the inverse spectral problem for these operators, appropriate uniqueness theorems should
be obtained and possibly existing isospectral configurations should be found and classified.
As a step toward clarifying the isospectrality problem of dynamo operators, we discuss an
intertwining technique for η-pseudo-Hermitian 2 × 2-block-operator matrices with second-
order differential operators as matrix elements. The intertwiners are assumed as first-order
matrix differential operators with coefficients which are highly constrained by a system of
nonlinear matrix differential equations. We analyze the (hidden) symmetries of this equation
system, transforming it into a set of constrained and interlinked matrix Riccati equations.
Finally, we test the structure of the spherically symmetric MHD α2-dynamo operator on its
compatibility with the considered intertwining ansatz and derive a no-go theorem.

1 Introduction

This article is based on a talk given at the Fifth International Conference “Symmetry in Non-
linear Mathematical Physics” which was held in Kiev, June 23–29, 2003. A more detailed
presentation of the material is contained in Ref. [2].

Operator intertwining techniques are one of the basic ingredients of supersymmetric (SUSY)
quantum mechanics (QM) [3, 4]. With their help classes of isospectral operators have been
constructed for Hermitian Hamiltonians as well as recently for pseudo-Hermitian ones [5, 6].
The success of these techniques in obtaining new and wider classes of isospectral operators
raised the natural question whether a suitable extension of them can be developed for analyzing
the isospectrality problem [7] of the MHD α2-dynamo operator [8]

Ĥl[α] ≡




−p2 − l(l + 1)
r2

α(r)

pα(r)p+ α(r)
l(l + 1)
r2

−p2 − l(l + 1)
r2


 (1)

which acts on the domain1

D(Ĥl[α]) :=

{
ψ =

(
ψ1

ψ2

)
: ψ ∈ H̃ ≡ H ⊕H, H = L2

(
Ω, r2dr

)
,

Ω = [0, 1], ψ(1) = 0, rψ(r)|r→0 → 0

}

1It should be noted that this domain D(Ĥl[α]) corresponds to highly idealized and physically non-realistic
boundary conditions (see the corresponding comments in Ref. [2] and the setup of the model in Ref. [8]).
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in the Hilbert space H̃ and where p = −i(∂r +1/r) denotes the radial momentum operator. The
scalar function α(r) is the helical turbulence function (α-profile) of the α2-dynamo [2, 8] and
plays a similar role like the potential V (r) in QM models.

Subsequently, it is shown in a sketchy outline that a no-go theorem exists which forbids an
extension of the operator intertwining formalism from pseudo-Hermitian QM Hamiltonians to
the 2×2-operator matrix (1) of the spherically symmetric α2-dynamo in its simplest ansatz. The
obstruction for such an extension consists in the presence of the centrifugal terms l(l + 1)/r2.

2 Operator intertwining ansatz

In SUSY QM the operator intertwining technique heavily relies on the Hermiticity or pseudo-
Hermiticity of the corresponding Hamiltonians

H = H† or H = H� ≡ ηH†η.

The operator η is Hermititian, involutory and unitary

η = η†, η2 = I, η−1 = η†

and, depending on the concrete model, it can be, e.g., the operator of a parity-transformation P
[5, 9] or of some other symmetry [10]. For the operator matrix of the α2-dynamo one obtains
the similar relation

Ĥl[α] = Ĥ�
l [α] ≡ ηĤ†

l [α]η, η =
(

0 1
1 0

)
.

The structure of the α2-dynamo operator itself cannot be reduced by appropriate complexifica-
tion to the simpler setup of one-component pseudo-Hermitian QM Hamiltonians [11].

Due to the matrix structure of the dynamo operator and the α-coupling in its highest (second)
order differential expressions we generalize the intertwining technique of QM by an ansatz

Ĥl0 [α0] − EI = −ÂÂ�, Ĥl1 [α1] − EI = −Â�Â (2)

which is based on first-order differential operators

Â := iR(r)p+Q(r), Â� := −ipR�(r) +Q�(r). (3)

Dynamos with different α-profiles α0(r) �= α1(r) will be isospectral, if appropriate 2 × 2-matrix
functions R(r) and Q(r) can be constructed so that the relations (2), (3) are fulfilled simulta-
neously. Otherwise, intrinsic contradictions should be found which could be interpreted as
a no-go theorem.

For the subsequent analysis it is convenient to introduce the auxiliary matrices K0,1, M0,1

K0,1 := I − α0,1σ−,

M0,1 := K0,1
l0,1(l0,1 + 1)

r2
+ EI − α0,1σ+

with the nilpotent matrices σ± defined as σ+ :=
(

0 1
0 0

)
, σ− :=

(
0 0
1 0

)
. The shifted

α2-dynamo operator matrices in (2) take then the short form

Ĥl0,1 [α0,1] − EI = −pK0,1p−M0,1. (4)
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As next step, equations (3), (4) can be substituted into the intertwining ansatz (2) and terms
of the same type of differential operators p2, p, p0 = I can be equated (after appropriate
commutations like [p,R(r)] = −iR′(r)). As a result, one obtains the following six consistency
conditions

Ĥl0 : p2 : RR� = K0, (5)

p : RQ� −QR� −R(R�)′ +R′R� = 0, (6)

I : QQ� −R(R�)′′ +R(Q�)′ −Q(R�)′ = M0, (7)

Ĥl1 : p2 : R�R = K1, (8)

p : −R�Q+Q�R = 0, (9)

I : Q�Q−
(
R�Q

)′
= M1. (10)

For a successful intertwining construction these matrix equations should be fulfilled simulta-
neously. So, the main task consists in finding explicit solution sets for (5)–(10). Alternatively,
intrinsic contradictions within this equation system should be obtained which could be inter-
preted as a no-go theorem forbidding this construction for α2-dynamo operator matrices.

3 Consistency analysis

The easiest way for starting the analysis is from equations (5) and (8). From the tautologies
RR�R = RR�R and R�RR� = R�RR� follows

RK1 = K0R, K1R
� = R�K0

which with

R =
(
r11 r12

r21 r22

)
, R� =

(
r∗22 r∗12

r∗21 r∗11

)

yields

r12 = 0,
α1

α0
=
r11

r22
=
r∗11

r∗22

. (11)

Hence, one can set

r11 = |r11|eiγ , r22 = |r22|eiγ , r21 = |r21|ei(γ+ε).

Using this and (11) in

RR� = K0 =
(

1 0
−α0 1

)
, R�R = K1 =

(
1 0

−α1 1

)

one finds

R = eiγ




√
α1

α0
0

−1
2
√
α0α1 (1 + i tan ε)

√
α0

α1


 , (12)

where the phases γ and ε are still undefined.
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As next step, equations (6) and (9) will be analyzed. It is easily seen that for the matrices

U := R
[
Q� − (R�)′

]
, B := R�Q (13)

these equations are equivalent to the J-symmetry relations

U = U �, B = B�.

Due to the different symmetry content of B and Q it is natural to consider B as primary
structural element of the intertwining construction, andQ as a secondary one. So, the subsequent
investigation can be performed in terms of B and R. Explicitly, the η-symmetry is realized by
the matrix structure

B =
(
b1 + ib4 b2
b3 b1 − ib4

)
, �bk = 0, k = 1, . . . , 4. (14)

Furthermore, Q can be excluded from (13) to obtain the interlinking constraint

U = RBR−1 −R(R�)′. (15)

Introducing the notation N := R−1R′ and substituting (15) into the symmetry relation U = U �

yields the additional constraint[
B,K−1

1

]
= N � −N. (16)

From equation (12) one finds

N = iγ′I +
( −q 0

f q

)
,

q =
1
2

(
α′

0

α0
− α′

1

α1

)
, (17)

f = −α1

2

[
α′

0

α0
(1 + i tan ε) + i

ε′

cos2 ε

]
(18)

so that (16) transforms to

α1

(
b2 0

−2ib4 −b2

)
= −2iγ′I +

(
2q 0

f∗ − f −2q

)
.

Finally, one arrives at the following restrictions on the phase γ and the components b2 and b4
of the matrix B:

γ′ = 0, b2 =
2q
α1
, b4 =

�f
α1

= −1
2

(
α′

0

α0
tan ε+

ε′

cos2 ε

)
. (19)

In summary, one finds that the first four consistency conditions are free of intrinsic contradic-
tions. From the initially eight arbitrary complex-valued functions contained in the matrices R
and Q only the three real-valued functions (b1, b3, ε) are still undefined. Together with the helical
turbulence functions (α0, α1) and the constants (γ,E, l0, l1) ∈ R

2 ×Z
2
+ they can be expected to

be highly fine-tuned by the remaining two consistency conditions (7) and (10).
These conditions can be strongly simplified with the help of the definitions of U and B in (13),

their implications

Q� − (R�)′ = R−1U, (20)

(Q�)′ − (R�)′′ = −R−1R′R−1U +R−1U ′,

Q = (R�)−1B (21)
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and the relations RR� = K0, R�R = K1. According to equations (5), (8), one finds that (7)
and (10) transform to the matrix Riccati equations (MREs)

U ′ = M0 − UK−1
0 U, (22)

B′ = −M1 +BK−1
1 B. (23)

These MREs can be linearized by an ansatz [12,13]

U = VW−1, V,W ∈ C
2×2, det(W ) �= 0,

B = XY −1, X, Y ∈ C
2×2, det(Y ) �= 0

to give the equation systems(
V ′

W ′

)
=

(
0 M0

K−1
0 0

) (
V
W

)
,

(
X ′

Y ′

)
= −

(
0 M1

K−1
1 0

) (
X
Y

)
. (24)

The 4× 2 matrices
(

V
W

)
,

(
X
Y

)
∈ C

4×2 are defined up to GL(2,C)×GL(2,C)-transforma-

tions (
Ṽ

W̃

)
=

(
V G0

WG0

)
,

(
X̃

Ỹ

)
=

(
XG1

Y G1

)
, G0, G1 ∈ GL(2,C)

and can be interpreted as homogeneous coordinates of two points on a complex Grassmann
manifold G2(C4) which consists of 2-dimensional complex subspaces in C

4 (see, e.g. [12, 13]).
The matrices U = VW−1 and B = XY −1 are the corresponding affine coordinates of these
points.

By differentiating (24) and substituting V = K0W
′, X = −K1Y

′ it is easily seen that the
equation systems (24) are equivalent to the second-order matrix differential equations

(∂rK0∂r −M0)W = 0,
(∂rK1∂r −M1)Y = 0. (25)

This implies that the matrices W̃ = r−1W , Ỹ = r−1Y should be formal (non-normalized) solu-
tions of the eigenvalue equations for the dynamo operator matrices Ĥl0 [α0], Ĥl1 [α1], respectively

Ĥl0 [α0]W̃ = EW̃ , Ĥl1 [α1]Ỹ = EỸ .

Similar like in QM models, the intertwining operator matrix Â can be expressed in terms of W
or Y . With the help of (20), (21) and (24) one finds

Â = R
(
ip− Y ′Y −1

)
=

(
ip+K0W

′W−1K−1
0

)
R.

Additionally, the interlinking constraint (15) induces a product invariant for the matrices W
and Y . The latter can be obtained by substitution of

U = RR�W ′W−1, B� = −(Y �)−1(Y �)′R�R

into the slightly modified version of the interlinking constraint (15)

U = RB�R−1 −R(R�)′.

As intermediate relation one obtains

W ′W−1 = −(R�)−1(Y �)−1(Y �)′R� − (R�)−1(R�)′
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which is of Lie algebra conjugation type g = g1n, (∂rg)g−1 = (∂rg1)g−1
1 + g1(∂rn)n−1g−1

1 and
which can be integrated to yield the product invariant

Y �R�W = C, det(C) �= 0,

with C a constant non-singular matrix.
So far, the intertwining technique of pseudo-Hermitian QM is generalized to the η-symmetric

dynamo operator model. It remains to test whether the MREs of this model are consistent.

4 No-go theorem

In order to test the pair of MREs (22), (23) for consistency, one can use equations (15), (16) as
well as the relation

N +K−1
1 N �K1 = K−1

1 K ′
1 = K ′

1

and transform the MRE for U (equation (22)) into an equivalent MRE for B. As result, one
arrives at the following pair of MREs

B′ = R−1M0R−K−1
1 BB +BK ′

1 +
[
NN � + (N �)′

]
K1, (26)

B′ = −M1 +BK−1
1 B, (27)

which should be satisfied simultaneously. The corresponding consistency test will be performed
in two steps:

1. From the limiting behavior at r → 0 a relation between l0 and l1 will be derived.

2. From equations (26), (27) a system of non-linear ODEs will be extracted for the helical
turbulence functions α0, α1 and for the components b1, . . . , b4 of the matrix B. By mutual
substitutions of these ODEs an inconsistency will be found which can be interpreted as
a no-go theorem.

4.1 Limiting behavior at r → 0

From the assumed non-singular behavior of the helical turbulence functions at r → 0 it follows
that they can be approximated as

α0,1(r → 0) ≈ c0,1 + a0,1r + O (
r2

)
, c0,1 �= 0.

Substituting this approximation in a slightly rewritten version of the defining equation (25) for
the matrix Y[

I∂2
r − α′

1σ−∂r − l1(l1 + 1)
r2

I −
(

E −α1

α1 E − α2
1

)]
Y = 0 (28)

one obtains the estimate

Y (r → 0) ≈ r−l1
(
I +

a1

2
σ−r + O (

r2
)) (

r2l1+1C+ + C−
)
,

where C+, C− are arbitrary non-singular constant matrices det(C±) �= 0. Correspondingly, it
holds

Z := Y ′Y −1 ≈ −l1r−1I +
a1

2
σ− + O(r), (29)

B = −K1Y
′Y −1 ≈ l1r

−1I − [
c1l1r

−1 + (l1 + 1/2)a1

]
σ− + O(r). (30)
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Comparison of (30) with (14) shows that the components b2 and b4 of the matrix B vanish at
least as

b2, b4 ≈ O(r) for r → 0.

Furthermore, one finds with the help of equations (17), (18) and (19) that q ≈ O(r) and, hence,
a0/c0 = a1/c1, as well as q′, f, f ′ ≈ O(1) what implies N,N �, (N �)′ ≈ O(1).

Now, a partial consistency test of (26) and (27) can be performed by comparing the singular
terms of these equations in the vicinity of the origin r = 0. From the MREs (26) and (27) one
finds

−K−1
1 K ′

1Z − Z ′ =
l0(l0 + 1)

r2
I −K−1

1 ZK1Z − ZK ′
1 + O(1), (31)

−K−1
1 K ′

1Z − Z ′ = − l1(l1 + 1)
r2

I + ZZ + O(1), (32)

respectively. Substituting Z from (29) and equating the coefficients of the r−2-, r−1-terms one
obtains from equation (31)

l1 = l0 + 1, a1 = 0

and, hence, also a0 = 0. Equation (32) is automatically satisfied, because Y is defined by the
corresponding linearized equation (28). The incremental relation l1 = l0 + 1 is well known
from ladder operator constructions for spherically symmetric Hamiltonians in QM [4]. This is
not surprising, because this ladder operator construction can be recovered from the intertwining
construction (2) for the α2-dynamo operator matrices by the two-step transition: 1. α0 = α1 = α,
2. α→ 0.

4.2 Systems of coupled non-linear ODEs and their inconsistency

The system of eight coupled non-linear ODEs for the components b1, . . . , b4 of the matrix B
is easily obtained from the MREs (26), (27), e.g. with the help of the matrix multiplication
package of MATHEMATICA c©. For the analysis it is sufficient to consider only the simplest four
equations of this system, i.e. the σ+ and I projections of (26) and (27):

b′2 = 2b1b2 + α1(1 + b22) (33)

= −2b1b2 − α2
0

α1
, (34)

b′1 = b21 + b2b3 − b24 − E − l1(l1 + 1)
r2

+ α1b1b2, (35)

= −b21 − b2b3 + b24 + E +
l0(l0 + 1)

r2
− α′

1b2 +
α2

0

2
+ q′ − q2. (36)

Equating the right-hand sides of (33), (34) and using b2 = 2q/α1 from (19) one expresses b1 as

b1 = −4q2 + α2
0 + α2

1

8q
. (37)

Taking into account that q = ∂r ln(α0/α1)/2 according to equation (17) and that the helical
turbulence functions α0 and α1 do not depend on l0 or l1 one concludes from equation (37) that
b1 should not depend on l0 or l1 too. On the other hand, addition of (35) and (36) together with
the relation l0 = l1 − 1 gives

2b′1 = −2l1
r2

+ 2q
(
b1 − α′

1

α1

)
+
α2

0

2
+ q′ − q2
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what by integration leads to a function b1 which depends on l1. I.e. the term depending on l1
cannot be compensated by a combination of l1-independent terms. This is an obvious contradic-
tion to (37) and one has to conclude that the consistency conditions (5)–(10) cannot be fulfilled
simultaneously. This means that it holds following

No-go theorem. The structure of the MHD α2-dynamo operator matrix is incompatible with an
operator intertwining technique which is based on first-order differential intertwining operators.

A similar situation occurs also for three-dimensional spherically symmetric models in QM [4].
There the l-dependent centrifugal term sets so strong restrictions on the form of the allowed
potential that an intertwining construction built on first-order differential intertwining operators
is only possible for the following three cases: the constant potential V (r) = const, the Coulomb
potential V (r) ∝ 1/r, and the potential of the three-dimensional isotropic harmonic oscillator
with V (r) ∝ r2. Richer classes of allowed potentials are only found for models in their s states,
when l = 0. Such states are a priori excluded for the α2-dynamo operator matrix due to its
construction [2].

Acknowledgements

The author thanks F. Stefani for fruitful collaboration, and G. Gerbeth, C. Tretter and M. Znojil
for useful discussions. The project was supported by the German Research Foundation, DFG,
under grant GE-682/12-1.

[1] Bender C.M. and Boettcher S., Real spectra in non-Hermitian Hamiltonians having PT symmetry, Phys.
Rev. Lett., 1998, V.80, N 24, 5243–5246; physics/9712001;
Znojil M., PT-symmetric harmonic oscillators, Phys. Lett. A, 1999, V.259, 220–223; quant-ph/9905020;
Bender C.M., Brody D.C. and Jones H.F., Complex extension of quantum mechanics, Phys. Rev. Lett.,
2002, V.89, N 27, 270401; quant-ph/0208076.

[2] Günther U. and Stefani F., Isospectrality of spherical MHD dynamo operators: pseudo-Hermiticity and
a no-go theorem, J. Math. Phys., 2003, V.44, N 6, 3097–3111; math-ph/0208012.

[3] Witten E., Constraints on sypersymmetry breaking, Nucl. Phys. B, 1982, V.202, 253–316;
Gendenshtein L.E. and Krive I.V., Supersymmetry in quantum mechanics, Usp. Fiz. Nauk, 1985, V.146,
553–590 (Sov. Phys. Usp., 1985, V.28, 645–666);
Cooper F., Khare A. and Sukhatme U., Supersymmetry and quantum mechanics, Phys. Rep., 1995, V.251,
267–385; hep-th/9405029.

[4] De Lange O.L. and Raab R.E., Operator methods in quantum mechanics, Oxford, Clarendon Press, 1991.

[5] Mostafazadeh A., Pseudo-Hermiticity versus PT symmetry: the necessary condition for the reality of the
spectrum of a non-Hermitian Hamiltonian, J. Math. Phys., 2002, V.43, 205–214; math-ph/0107001.

[6] Mostafazadeh A., Pseudo-supersymmetric quantum mechanics and isospectral pseudo-Hermitian Hamilto-
nians, Nucl. Phys. B, 2002, V.640, 419–434; math-ph/0203041.

[7] Stefani F. and Gerbeth G., A toy model for inverse dynamo theory, Phys. Earth Planet. Inter., 2001, V.128,
109–124.
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