
ffect in
o-
99,

e
or the
t in the
l dyna-
orous

ion of

truct-
eorem

as

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 44, NUMBER 7 JULY 2003

Downloaded
Isospectrality of spherical MHD dynamo operators:
Pseudo-hermiticity and a no-go theorem
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The isospectrality problem is studied for the operator of the spherical hydromag-
netic a2-dynamo. It is shown that this operator is formally pseudo-Hermitian
(J-symmetric! and lives in a Krein space. Based on theJ-symmetry, an operator
intertwining Ansatz with first-order differential intertwining operators is tested for
its compatibility with the structure of thea2-dynamo operator matrix. An intrinsic
structural inconsistency is obtained in the set of associated matrix Riccati equa-
tions. This inconsistency is interpreted as a no-go theorem which forbids the con-
struction of isospectrala2-dynamo operator classes with the help of first-order
differential intertwining operators. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1573741#

I. INTRODUCTION

The magnetic fields of stars and planets are generated by the homogeneous dynamo e
moving electrically conducting fluids.1 This effect is explained within the framework of magnet
hydrodynamics~MHD!, but its experimental demonstration was missing until recently. In 19
the first successful dynamo experiments in Riga and Karlsruhe2 opened up a new way for th
laboratory investigation of homogeneous dynamos. In connection with the data analysis f
existing experiments and the design of new dynamo experiments there is a growing interes
spectral properties of dynamos. Of particular interest is the question of whether isospectra
mos can exist. The first numerical results on this topic were published in Refs. 3, 4, but rig
results are still missing.

As a step towards clarification of this issue, we study in the present paper the quest
whether operator intertwining techniques from quantum mechanics~QM! can be adopted to MHD
dynamo models. In case of an affirmative answer we would obtain an efficient tool for cons
ing isospectral classes of MHD dynamo operators. Otherwise we would get a no-go th
which would forbid a straight analogy with quantum mechanical models.

Let us start by recalling some essentials of operator intertwining transformations in QM.5 Two
operatorsH0 andH1 are said to be intertwined if there exist operatorsA1 andA2 so that

H1A15A1H0, A2H15H0A2 . ~1!

For the corresponding eigenfunctionsf0 andf1 holds, up to normalization,

f15A1f0, A2f15f0 ,

and the operatorsH0 andH1 are isospectral, except for those states that are annihilated byA1 or
A2 . In the case of one-dimensional Schro¨dinger operatorsH05p21V0(x) andH15p21V1(x)
with the momentum operator given asp52 i ]x , the intertwining operators can be chosen
first-order differential operators,

a!Electronic mail: u.guenther@fz-rossendorf.de
b!Electronic mail: f.stefani@fz-rossendorf.de
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A15Aª ip1 f , A25A†52 ip1 f . ~2!

Structural compatibility ofH0 andH1 with the intertwining relations~1! requires that the function
f (x) and the potentialsV0(x), V1(x) are connected by the consistency conditions

V15V012 f 8,

2 f 81 f 25V02E, ~3!

f 81 f 25V12E, ~4!

where the prime denotes differentiation with respect tox; and E is a constant of integration
Linearization of the Riccati differential equations~3!, ~4! shows that this constant can be inte
preted as eigenvalue of the Schro¨dinger operatorsH0 andH1 ,

H0x05Ex0 , for f 52
x08

x0
, ~5!

H1x15Ex1 , for f 5
x18

x1
, ~6!

where x0 and x1 are formal, and not necessarily normalized eigenfunctions ofH0 and H1 ,
respectively. They are connected by the product relation

x0x15c, ~7!

with c a nonvanishing constant. It is straightforward to verify that the shifted Schro¨dinger opera-
tors are factorizable in terms of the intertwining operators,

H02E5A†A, H12E5AA†.

First-order differential intertwining transformations of type~2! are known as Darboux
transformations6 and are widely used to generate isospectral operator classes from given ope
with known spectra.5,7,8 In particular, intertwining constructions are a basic ingredient of su
symmetric quantum mechanical models5,9 and their generalizations to pseudo-supersymme
systems.10,11 As it was demonstrated in Ref. 12, a double-intertwining~double commutation!
method can provide a tool for inserting additional eigenvalues in spectral gaps of given
ground Schro¨dinger and Jacobi operators.

Motivated by the large number of exact results on isospectral classes obtained by op
intertwining constructions, it is natural to investigate whether MHD dynamo operators are
suitable for this technique. For this purpose we study in the present paper the simplest mea
MHD dynamo configuration—the sphericala2-dynamo.1 In terms of the radial momentum opera
tor p52 i (] r11/r ) the 232 operator matrix of thea2-dynamo is given as

Ĥ l@a#[S 2p22
l ~ l 11!

r 2 a~r !

pa~r !p1a~r !
l ~ l 11!

r 2 2p22
l ~ l 11!

r 2

D , ~8!

and lives on the domain

D~Ĥ l@a#!ª Hc5S c1

c2
D : cPH̃[H% H, H5L2~V,r 2dr !,
 20 Jun 2003 to 141.30.124.127. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



odel
t

r-
equent
rical

ndary

t

if-

gi-

ospec-
e

la-

r

tions

-step
r

be

3099J. Math. Phys., Vol. 44, No. 7, July 2003 Isospectrality of spherical MHD dynamo operators

Downloaded
V5@0,1#, c~1!50, rc~r !ur→0→0%,

in the Hilbert spaceH̃. ~A brief outline of the derivation of thea2-dynamo operator matrix from
the MHD mean-field induction equation can be found in the Appendix.! It describes the coupled
l -modes of the poloidal and toroidal magnetic field components in a mean-field dynamo m
with helical turbulence functiona(r ). The functiona(r ) does not depend onl and we assume tha
it is real-valued, positive definite, bounded, and sufficiently smooth onV: Im a50, 0,a<c1

,`, aPC4(V). The idealized boundary conditionc(r 51)50 corresponds to a supe
conducting spherical boundary shell and is chosen here to ensure simplicity of the subs
considerations.13 For more realistic models with a close relation to stellar dynamos, the sphe
fluid configurations confined tor ,1 can be assumed as embedded in empty space. The bou
condition should then be replaced byB̂lcur 5150 with B̂l5diag@]r1(l11)/r,1# ~see, e.g., Ref. 1!
what will require a more general approach than that presented in the present paper.

Exploring the fundamental symmetry of thea2-dynamo operator matrix we find in Sec. II tha
Ĥ l@a# acts as a symmetric operator on the Hilbert spaceH̃ when this is endowed with an
indefinite metricJ. That means thea2-dynamo operator matrix is aJ-symmetric ~formally
J-self-adjoint! operator,

Ĥ l@a#5Ĥ l
]@a#ªJĤl

†@a#J,

living in a Krein spaceK̃5H̃J .14 J-self-adjointness is a natural property of operators from d
ferent fields of physics. Examples are, e.g., the super-symmetric Dirac operator,15 PT-symmetric
non-Hermitian Hamiltonians in QM10,16as well as the Wheeler–DeWitt operator for a cosmolo
cal Friedman–Robertson–Walker model coupled to a real massive scalar field.10 Since the recent
paper series10,11,17of Mostafazadeh on non-Hermitian operators with real spectra,J-self-adjoint
operators are also known as pseudo-Hermitian operators.

In analogy with the simple quantum mechanical model described above, we base our is
trality analysis on an intertwining Ansatz for twoa2-dynamo operators with helical turbulenc
functionsa0(r ), a1(r ),

Ĥ l 0
@a0#2EI52ÂÂ], Ĥ l 1

@a1#2EI52Â]Â,

and intertwining operator matricesÂ, Â] that are first-order differential operators,

Âª iR~r !p1Q~r !, Â]
ª2 ipR]~r !1Q]~r !.

This Ansatz leads to a set of six consistency conditions on the matricesR(r ) andQ(r ) which are
studied in Sec. III. It is shown that one pair of conditions fixes the structure ofR(r ) in terms of the
helical turbulence functionsa0(r ) anda1(r ). A second pair is equivalent to the symmetry re
tions B5B], U5U] on the matrix functions

BªR]Q,

UªR@Q]2~R]!8#5RBR212R~R]!8,

and can be regarded as an implicit consequence of theJ-pseudo-Hermiticity of the operato
matricesĤ l 0

@a0# andĤ l 1
@a1#. ~The prime denotes the derivative with respect tor .) The remain-

ing two conditions can be transformed into a pair of coupled matrix Riccati differential equa
~MREs! on B andU.

The consistency of the six conditions is analyzed in Sec. IV with the help of a step-by
reduction of their complexity. First, we conclude from the limiting behavior of the MREs for
→0 that the angular mode numbersl 0 and l 1 in the two dynamo operator matrices should
connected by the incremental relationl 15 l 011. Then we use theJ-symmetry ofB to derive from
 20 Jun 2003 to 141.30.124.127. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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the coupled MREs a system of coupled nonlinear ordinary differential equations~ODEs! involving
the helical turbulence functionsa0(r ) anda1(r ). Analyzing these ODEs, we are able to show t
existence of an inherent contradiction between them. As an implication, we arrive at a
theorem which states that the six consistency conditions cannot be fulfilled simultaneous
that, hence, the structure of thea2-dynamo operator matrices is not suitable for an opera
intertwining technique based on an Ansatz with first-order differential intertwining operators

In the concluding section~V! we briefly discuss some other methods which could be us
for studying isospectrality issues of the dynamo operator matrix and which possibly could pr
a technique to construct classes of isospectral sphericala2-dynamo operators.

II. J -SYMMETRY OF THE DYNAMO OPERATOR MATRIX

In this section, we study the fundamental symmetryJ of the a2-dynamo operator matrix~8!
which allows us to choose an appropriate Ansatz for the intertwining operatorsA1 andA2 .

We start our consideration by introducing the auxiliary operator

Q@a#ªpap1a
l ~ l 11!

r 2 ,

defined on the domain

D~Q!5$f: fPH5L2~V,r 2dr !,f~1!50, rf~r !ur→0→0%,

in the Hilbert spaceH. The operatorQ@a# is a formally self-adjoint singular differential operato
Q5Q† which acts as symmetric operator onH. @In the subsequent compatibility analysis of th
operator intertwining construction we restrict our attention to symmetric~formally self-adjoint!
operators. For simplicity, we leave questions of self-adjoint extensions and corresponding
alized boundary conditions18,19 for the bi-component functionsc aside.# In terms ofQ@a# the
dynamo operator matrix and its formal adjoint read as

Ĥ l@a#5S 2Q@1# a

Q@a# 2Q@1#
D , Ĥ l

†@a#5S 2Q@1# Q@a#

a 2Q@1#
D ,

so that the fundamental~canonical! symmetry can be obtained as

Ĥ l@a#5Ĥ l
]@a#ªJĤl

†@a#J, J5S 0 1

1 0D . ~9!

Diagonalizing the matrixJ,

J→h5STJS, S5
1

&
S 1 21

1 1 D , h5S 1 0

0 21D ,

we see thatĤ l@a# is equivalent to the operator matrix,

Ȟ l@a#5STĤl@a#S5
1

2 S Q@a22#1a 2Q@a#1a

Q@a#2a Q@2a22#2a D ,

with the propertyȞ l@a#5hȞ l@a#†h. The fundamentalh-symmetry of the operator matrixȞ l@a#

implies thatD(Ȟ l) could be endowed with the indefinite metrich so that Ȟ l@a# becomes a
symmetric operator onD(Ȟ l). Due to the invariance of the signature under the transformatioS

the domainD(Ĥ l) can also be endowed with a natural indefinite inner product@•,•#J defined by
the metricJ,
 20 Jun 2003 to 141.30.124.127. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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@x,y#Jª~x,Jy!, x,yPH̃5H% H,

where (•,•) denotes the usual inner~scalar! product in the Hilbert spaceH̃. This means that
Ĥ l@a# is a J-symmetric operator which acts as symmetric operator in a Krein spaceK̃5H̃J ,

@Ĥ lx,y#J5@x,Ĥ l
]y#J .

@For surveys on operators in Krein spaces~Hilbert spaces with additional indefinite inner produ
structures! we refer to the mathematical literature.14,20# From its operator-matrix representation~9!
we see thatJ is self-adjoint, involutory and unitary,

J†5J, J25I , J215J†,

so thatĤ l@a# is a J-pseudo-Hermitian operator in the sense of Refs. 10, 11, 17.
The eigenvalues ofJ-pseudo-Hermitian operators are known10,14,20to be either real or to come

in complex-conjugate pairs. Here we illustrate this property by passing from the eigenvalue
lem for the linear operator pencil,

L̂ l@a,l#cª~Ĥ l@a#2l!c50,

to the eigenvalue problemLl@a,l#c150 for the associated quadratic operator pencilLl@a,l#.
This pencil can be derived explicitly from the Ansatz

c5S c1

1

a
@Q@1#1l#c1

D ,

with a(r )Þ0. As result we obtain

Ll@a,l#c1[H @Q@1#1l#
1

a
@Q@1#1l#2Q@a#J c150

5~A2l21A1l1A0!c150.

The operators

A0ªQ@1#
1

a
Q@1#2Q@a#, A1ªQ@1#

1

a
1

1

a
Q@1#, A2ª

1

a
,

are formally self-adjoint onD(Q) so that the functionalsajª(Ajc1 ,c1), j 51,2,3 are real-
valued: Imaj50.

From the quadratic equation

~Ll@a,l#c1 ,c1!5a2l21a1l1a050,

we conclude that the eigenvalues of theJ-pseudo-Hermitian dynamo operator matrixĤ l and its
associated pencilLl occur as eigenvalue pairs,21

l65
1

2a2
~2a16Aa1

224a0a2!.

Obviously, the sign of the discriminantDªa1
224a0a2 defines whetherl6 are both real or

pairwise complex conjugate. The transition from real eigenvaluesl6 to complex ones occurs a
D50 where the eigenvalue becomes two-fold degeneratel15l25l052 a1/2a2 . This general
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behavior ofl6 confirms the results of numerical simulations,4 which showed that a scaling of th
helical turbulence functiona leads to a pairwise intersection of real eigenvalue branches ofĤ l and
a transition at the intersection points to a pair of complex conjugate eigenvalues.

We note that at the two-fold degenerate pointsl0 of the spectrum withD50 a Jordan–
Keldysh chain22 exists for the linear operator pencil,

L̂ l~l0!c50, L̂ l~l0!x5c,

as well as for the quadratic operator pencil,

Ll~l0!c150, Ll~l0!x11]lLl~l0!c150.

Both are built up from eigenvectorsc, c1 and associated vectorsx, x1 , respectively.

III. CONSISTENCY CONDITIONS AND MATRIX RICCATI EQUATIONS

The fundamentalJ-symmetry (J-pseudo-Hermiticity! of the a2-dynamo operator matrix pro
vides a natural Ansatz for an intertwining construction which respects this symmetry:

Ĥ l 0
@a0#2EI52ÂÂ], Ĥ l 1

@a1#2EI52Â]Â. ~10!

In general, the operator matrixÂ could be annth-order differential operator of the form

Â5 (
k51

n

Rk~r !~ ip !k1Q~r !,

with 232 matricesRk(r ) andQ(r ) as coefficients. For simplicity, we restrict our attention in t
present paper to the first-order differential operator,

Â5 iR~r !p1Q~r !, ~11!

with J-adjoint Â]52 ipR](r )1Q](r ). Here we define the]-operation for a given 232 matrix
C as

C]5JC†J5JC* TJ.

An asterisk and superscript ‘ ‘T’ ’ denote complex conjugation and transposition, respectively.
Let us introduce the abbreviations

K0,1ªI 2a0,1s2 ,

M0,1ªK0,1

l 0,1~ l 0,111!

r 2 1EI2a0,1s1 ,

with the nilpotent matricess6 defined as

s1ªS 0 1

0 0D , s2ªS 0 0

1 0D .

The shifteda2-dynamo operator matrices in~10! take then the short form

Ĥ l 0,1
@a0,1#2EI52pK0,1p2M0,1. ~12!
 20 Jun 2003 to 141.30.124.127. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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Substituting~11! and~12! into the intertwining Ansatz~10!, making use of commutation relation
like @p,R(r )#52 iR8(r ) and equating the coefficient matrices of thep2, p, I terms we obtain the
following six consistency conditions:

Ĥ l 0
: p2: RR]5K0 , ~13!

p: RQ]2QR]2R~R]!81R8R]50, ~14!

I : QQ]2R~R]!91R~Q]!82Q~R]!85M0 ; ~15!

Ĥ l 1
: p2: R]R5K1 , ~16!

p: 2R]Q1Q]R50, ~17!

I : Q]Q2~R]Q!85M1 . ~18!

For a successful intertwining construction these matrix equations should be fulfilled sim
neously. So, the main task consists in finding explicit solution sets for~13!–~18!. Alternatively, we
should obtain intrinsic contradictions within this equation system which could be interpreted
no-go theorem forbidding this construction fora2-dynamo operator matrices.

We start our analysis with Eqs.~13! and ~16!. From the tautologiesRR]R5RR]R and
R]RR]5R]RR] follows:

RK15K0R, K1R]5R]K0 ,

what with

R5S r 11 r 12

r 21 r 22
D , R]5S r 22* r 12*

r 21* r 11*
D

yields

r 1250,
a1

a0
5

r 11

r 22
5

r 11*

r 22*
. ~19!

Hence, we can set

r 115ur 11ueig, r 225ur 22ueig, r 215ur 21uei (g1«).

Using this and~19! in

RR]5K05S 1 0

2a0 1D , R]R5K15S 1 0

2a1 1D ,

we find

R5eigS Aa1

a0

0

2
1

2
Aa0a1~11 i tan«! Aa0

a1

D , ~20!

where the phasesg and« are still undefined.
As a next step we analyze Eqs.~14! and ~17!. It is easily seen that defining the matrices
 20 Jun 2003 to 141.30.124.127. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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UªR@Q]2~R]!8#, BªR]Q, ~21!

these equations are equivalent to theJ-symmetry relations

U5U], B5B].

Due to the different symmetry content ofB and Q it is natural to considerB as the primary
structural element of the intertwining construction, andQ as a secondary one. So, we perform o
subsequent investigation in terms ofB andR. Explicitly, theJ-symmetry is realized by the matri
structure

B5S b11 ib4 b2

b3 b12 ib4
D , Im bk50, k51,...,4. ~22!

Furthermore, we excludeQ from ~21! to obtain

U5RBR212R~R]!8. ~23!

Introducing the notationNªR21R8 and substituting~23! into the symmetry relationU5U]

yields the additional constraint

@B,K1
21#5N]2N. ~24!

From Eq.~20! we find

N5 ig8I 1S 2q 0

f qD ,

q5
1

2 S a08

a0
2

a18

a1
D , ~25!

f 52
a1

2 Fa08

a0
~11 i tan«!1 i

«8

cos2 «G , ~26!

so that~24! transforms to

a1S b2 0

22ib4 2b2
D 522ig8I 1S 2q 0

f * 2 f 22qD .

Finally, we arrive at the following restrictions on the phaseg and the componentsb2 andb4 of the
matrix B:

g850, b25
2q

a1
, b45

Im f

a1
52

1

2 S a08

a0
tan«1

«8

cos2 « D . ~27!

Summarizing the implications of the first four consistency conditions, we see that they ar
of intrinsic contradictions. From the initially eight arbitrary complex-valued functions containe
the matricesR andQ, only the three real-valued functions (b1 ,b3 ,«) are still undefined. Togethe
with the helical turbulence functions (a0 ,a1) and the constants (g,E,l 0 ,l 1)PR23Z1

2 , we expect
them to be highly fine-tuned by the remaining two consistency conditions~15! and ~18!.

Let us study these conditions now. Making use of the definitions ofU and B in ~21!, their
implications

Q]2~R]!85R21U, ~28!
 20 Jun 2003 to 141.30.124.127. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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~Q]!82~R]!952R21R8R21U1R21U8,

Q5~R]!21B, ~29!

and setting at the endRR]5K0 , R]R5K1 according to Eqs.~13!, ~16!, we find that~15! and~18!
transform to the matrix Riccati equations~MREs!

U85M02UK0
21U, ~30!

B852M11BK1
21B. ~31!

Similar to the linearization of the scalar Riccati equations mentioned in~3!–~6! of the Intro-
duction, the MREs~30!, ~31! can be linearized by an Ansatz,23,24

U5VW21, V,WPC232, det~W!Þ0, ~32!

B5XY21, X,YPC232, det~Y!Þ0. ~33!

As result we arrive at the equation systems

S V8
W8 D5S 0 M0

K0
21 0 D S V

WD , S X8
Y8 D52S 0 M1

K1
21 0 D S X

YD . ~34!

The 432 matrices

S V
WD ,S X

YDPC432

are defined up toGL(2,C)3GL(2,C)-transformations

S Ṽ

W̃
D 5S VG0

WG0
D , S X̃

Ỹ
D 5S XG1

YG1
D , G0 ,G1PGL~2,C!,

and can be interpreted as homogeneous coordinates of two points on a complex Gra
manifold G2(C4) which consists of 2-dimensional complex subspaces inC4 ~see, e.g., Refs. 23
24!. The matricesU5VW21 and B5XY21 are the corresponding affine coordinates of the
points.

Differentiating~34! and substitutingV5K0W8, X52K1Y8, it is easily seen that the equatio
systems~34! are equivalent to the second-order matrix differential equations,

~] rK0] r2M0!W50,
~35!

~] rK1] r2M1!Y50.

This implies that the matricesW̃5r 21W, Ỹ5r 21Y should be formal~non-normalized! solutions
of the eigenvalue equations for the dynamo operator matricesĤ l 0

@a0#, Ĥ l 1
@a1#, respectively,

Ĥ l 0
@a0#W̃5EW̃, Ĥ l 1

@a1#Ỹ5EỸ.

A comparison with the simple QM model from the Introduction shows that the intertwin
operator matrixÂ should be expressible in terms ofW or Y, and thatW and Y should be
connected by a product invariant like~7!. With the help of~28!, ~29! and ~34! we find

Â5R~ ip2Y8Y21!5~ ip1K0W8W21K0
21!R.
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In order to obtain the product invariant which connectsW and Y, we use a slightly modified
version of~23!,

U5RB]R212R~R]!8,

and substitute from~32!–~34!,

U5RR]W8W21, B]52~Y]!21~Y]!8R]R,

so that

W8W2152~R]!21~Y]!21~Y]!8R]2~R]!21~R]!8. ~36!

This equation is of the typeg5g1n, (] rg)g215(] rg1)g1
211g1(] rn)n21g1

21. Hence, integration
of ~36! yields the product invariant,

Y]R]W5C, det~C!Þ0,

with C a constant nonsingular matrix.
So far, we have obtained a 1:1 generalization of the intertwining technique from the s

QM example described in the Introduction to ourJ-symmetric dynamo operator model. It remai
to test whether the MREs of this model are consistent. This will be the subject of the next se

IV. NO-GO THEOREM

In order to test the pair of MREs~30!, ~31! for consistency, we make use of~23!, ~24! as well
as the relation

N1K1
21N]K15K1

21K185K18 ,

and transform the MRE forU @Eq. ~30!# into an equivalent MRE forB. As result, we arrive at the
following pair of MREs:

B85R21M0R2K1
21BB1BK181@NN]1~N]!8#K1 , ~37!

B852M11BK1
21B, ~38!

which should be satisfied simultaneously. The corresponding consistency test will be perform
two steps:

~1! From the limiting behavior atr→0 we will derive a relation betweenl 0 and l 1 .
~2! We will extract from Eqs.~37!, ~38! a system of nonlinear ODEs for the helical turbulen

functionsa0 ,a1 and for the componentsb1 ,...,b4 of the matrixB. By mutual substitutions of
these ODEs we will find an inconsistency which can be interpreted as a no-go theorem.

A. Limiting behavior at r\0

From the assumed nonsingular behavior of the helical turbulence functions atr→0 follows
that they can be approximated as

a0,1~r→0!'c0,11a0,1r 1O~r 2! , c0,1Þ0.

Substituting this approximation in a slightly rewritten version of the defining equation~35! for the
matrix Y,

F I ] r
22a18s2] r2

l 1~ l 111!

r 2 I 2S E 2a1

a1 E2a1
2D GY50, ~39!
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we obtain the estimate

Y~r→0!'r 2 l 1S I 1
a1

2
s2r 1O~r 2! D ~r 2l 111C11C2!,

whereC1 , C2 are arbitrary nonsingular constant matrices det(C6)Þ0. Correspondingly, it holds

ZªY8Y21'2 l 1r 21I 1
a1

2
s21O~r !, ~40!

B52K1Y8Y21' l 1r 21I 2@c1l 1r 211~ l 111/2!a1#s21O~r !. ~41!

A comparison of~41! with ~22! shows that the componentsb2 andb4 of the matrixB vanish at
least as

b2 ,b4'O~r !, for r→0.

Furthermore, we find with the help of Eqs.~25!, ~26! and ~27! that q'O(r ) and, hence,a0 /c0

5a1 /c1 , as well asq8, f , f 8'O(1) which impliesN,N],(N])8'O(1).
We are now well prepared to perform a partial consistency test of~37! and~38! by comparing

the singular terms of these equations in the vicinity of the originr 50. From the MREs~37! and
~38! we find

2K1
21K18Z2Z85

l 0~ l 011!

r 2 I 2K1
21ZK1Z2ZK181O~1!, ~42!

2K1
21K18Z2Z852

l 1~ l 111!

r 2 I 1ZZ1O~1!, ~43!

respectively. SubstitutingZ from ~40! and equating the coefficients of ther 22,r 21-terms we
obtain from Eq.~42!,

l 15 l 011, a150,

and, hence, alsoa050. Equation~43! is automatically satisfied, becauseY is defined by the
corresponding linearized equation~39!. The incremental relationl 15 l 011 is well known from
ladder operator constructions for spherically symmetric Hamiltonians in QM.5 This is not surpris-
ing, because this ladder operator construction can be recovered from the intertwining const
~10! for the a2-dynamo operator matrices by the two-step transition: 1.a05a15a, 2. a→0.

B. Systems of coupled nonlinear ODEs and their inconsistency

The system of eight coupled nonlinear ODEs for the componentsb1 ,...,b4 of the matrixB is
easily obtained from the MREs~37!, ~38!, e.g., with the help of the matrix multiplication packag
of MATHEMATICA ©. For our analysis it is sufficient to consider only the simplest four equation
this system, i.e., thes1 and I projections of~37! and ~38!:

b2852b1b21a1~11b2
2!, ~44!

522b1b22
a0

2

a1
, ~45!
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b185b1
21b2b32b4

22E2
l 1~ l 111!

r 2 1a1b1b2 , ~46!

52b1
22b2b31b4

21E1
l 0~ l 011!

r 2 2a18b21
a0

2

2
1q82q2. ~47!

Equating the right-hand-sides of~44!, ~45! and usingb252q/a1 from ~27! we are able to expres
b1 as

b152
4q21a0

21a1
2

8q
. ~48!

Taking into account thatq5] r ln(a0 /a1)/2 according to~25! and that the helical turbulence func
tions a0 anda1 do not depend onl 0 or l 1 we conclude from Eq.~48! that b1 should not depend
on l 0 or l 1 too. On the other hand, the addition of~46! and ~47! together with the relationl 0

5 l 121 gives

2b1852
2l 1

r 2 12qS b12
a18

a1
D 1

a0
2

2
1q82q2,

which by integration leads to a functionb1 which depends onl 1 . That means, the term dependin
on l 1 cannot be compensated by a combination ofl 1-independent terms. This is an obviou
contradiction to~48! and we have to conclude that the consistency conditions~13!–~18! cannot be
fulfilled simultaneously. This means that we are lead to the

No-go theorem:The structure of the MHDa2-dynamo operator matrix is incompatible wit
an operator intertwining technique which is based on first-order differential intertwining oper

A similar situation occurs also for three-dimensional spherically symmetric models in Q5

There thel -dependent centrifugal term sets so strong restrictions on the form of the all
potential that an intertwining construction built on first-order differential intertwining operato
only possible for the following three cases: the constant potentialV(r )5const, the Coulomb
potentialV(r )}1/r , and the potential of the three-dimensional isotropic harmonic oscillator
V(r )}r 2. Richer classes of allowed potentials are only found for models in theirs states, when
l 50. Such states area priori excluded for thea2-dynamo operator matrix due to its constructio
@see Eq.~A5!#.

V. CONCLUDING REMARKS

In the present paper, we have tested the MHDa2-dynamo operator matrix for its compatibilit
with the simplest variant of an intertwining construction based onfirst-orderdifferential intertwin-
ing operators. The operators have been chosen in accordance with the fundamentalJ-symmetry
~pseudo-Hermiticity! of the operator matrix and lead to a set of six matrix equations as consis
conditions. With the help of a step-by-step reduction of the complexity we have extracted
basic structural elements and have shown that they contain an intrinsic inconsistency. So, w
to conclude that the structure of thea2-dynamo operator matrix is not compatible with th
considered first-order differential intertwining Ansatz. This fact is the subject of the formu
no-go theorem.

It remains to test whether intertwining constructions can be built from second-order or h
order differential intertwining operators. Energy shift operators based on second-order diffe
expressions are known for harmonic oscillators with time-dependent frequencies and add
1/r 2-term25 as well as for the spherically symmetric oscillator and the Coulomb potentia5 A
generalization of the technique to the MHDa2-dynamo operator matrix seems realistic.

Another approach for a clarification of the considered isospectrality problem could cons
a generalization of the Gelfand–Levitan technique for vector-valued Sturm–Liouville proble26
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Concerning its general structure, thea2-dynamo operator matrixĤ l@a# is a singular non-self-
adjoint matrix Sturm–Liouville operator which by a unitary transformation can be recast int
standard form

2] r P2~r !] r1P0~r !.

In 1998, Jodeit and Levitan26 analyzed the isospectrality problem for matrix Sturm–Liouvi
operators withP2(r )5I and P0(r ) a symmetric matrix. They showed that if two vector-valu
Sturm–Liouville problems are isospectral then the eigenfunctions of one problem can be
structed from the eigenfunctions of the other problem with the help of a matrix Gelfand–Le
transformation. So, a generalization of this technique to Sturm-Liouville problems with non
metric P0(r ) and P2(r )ÞI 2 would naturally cover the isospectrality problem for the MH
a2-dynamo operator matrix.

ACKNOWLEDGMENTS

We would like to thank G. Gerbeth for numerous discussions and C. Tretter for useful
ments. This project was supported by the German Research Foundation, DFG, under Gr
GE-682/12-1.

APPENDIX A: DERIVATION OF THE a2-DYNAMO OPERATOR MATRIX FROM THE
MEAN-FIELD INDUCTION EQUATION

For completeness we sketch here the main steps of the derivation of the 232 operator matrix
Ĥ l@a# for a model with helical turbulence functiona(r ). The outline follows the technique fo
models witha5const as presented in Ref. 1.

The spherical MHD mean-fielda2-dynamo in its kinematic regime is described by the indu
tion equation for the magnetic field,

] tB5“Ã~aB!1nmDB, ~A1!

supplemented by the condition“"B50. The magnetic diffusivitynm is assumed to be constan
and the helical turbulence functiona to depend only on the distance from the origina5a(r ).
Decomposition into toroidal and poloidal componentsB5Bt1Bp and settingBp5“ÃAt allows
for a decomposition of the induction equation~A1!:

] tBt5“Ã~a“ÃAt!2nm“Ã“ÃBt , ~A2!

] tAt5aBt2nm“Ã“ÃAt . ~A3!

Furthermore, the fieldsBt andAt can be represented as

At52rÃ“F1 , Bt52rÃ“F2 ,

whereF1 andF2 are single-valued scalar functions which are normalized on the unit sphereS2 by
the condition

E
S2

F1,2 dv50. ~A4!

With the help of the relations

D~rÃ“F1!5rÃ“DF1 ,

“Ã@a“Ã~2rÃ“F1!#5rÃ“F1

r
~] ra!~] r rF 1!1aDF1G ,
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arÃ“F25rÃ“~aF2!,

Eqs.~A2! and ~A3! can be rewritten as

rÃ“@nmDF11aF22] tF1#50,

rÃ“FnmDF22
1

r
~] ra!~] r rF 1!2aDF12] tF2G50.

It follows that the expressions in the square brackets are functions ofr and t alone which must
vanish due to the normalization condition~A4! and its implication*S2DF1,2 dv50. By re-scaling
of r and t one sets the magnetic diffusivity to unitynm51 and the boundary conditions atr
51.

With the help of a series expansion in spherical harmonics,

F1,25 (
l ,m,n

el l ,ntF1,2
( l ,m,n)~r !Yl

m~u,f!PL2~V,r 2dr ! ^ L2~S2,dv!, V5@0,1#,

one obtains the eigenvalue problem

D lF1
( l ,m,n)1aF2

( l ,m,n)5l l ,nF1
( l ,m,n) ,

D lF2
( l ,m,n)2

1

r
~] ra!~] r rF 1

( l ,m,n)!2aD lF1
( l ,m,n)5l l ,nF2

( l ,m,n) .

Here we used the notationD l5(1/r 2) ] r r
2] r2 l ( l 11)/r 2 and the fact that due to the symmetry

the dynamo configuration1 the eigenvaluesl l ,n depend only onl andn. We note that the normal
ization condition~A4! implies

F1,2
( l 50,m,n)50. ~A5!

Finally, the substitutionsp52 i (] r11/r ), c1,25F1,2
( l ,m,n)PL2(V,r 2dr) lead to the eigenvalue

problem for thea2-dynamo operator matrixĤ l@a# as it is given in Eq.~8! of the Introduction.

1H. K. Moffatt, Magnetic Field Generation in Electrically Conducting Fluids~Cambridge University Press, Cambridg
1978!; F. Krause and K.-H. Ra¨dler, Mean-Field Magnetohydrodynamics and Dynamo Theory~Akademie-Verlag, Berlin
and Pergamon, Oxford, 1980!; Ya. B. Zeldovich, A. A. Ruzmaikin, and D. D. Sokoloff,Magnetic Fields in Astrophysics
~Gordon & Breach, New York, 1983!.

2A. Gailitis et al., Phys. Rev. Lett.84, 4365 ~2000!; 86, 3024 ~2001!; U. Müller and R. Stieglitz, Phys. Fluids13, 561
~2001!; A. Gailitis et al., Rev. Mod. Phys.74, 973 ~2002!.

3F. Stefani and G. Gerbeth, Astron. Nachr.321, 235 ~2000!.
4F. Stefani and G. Gerbeth, Phys. Earth Planet. Inter.128, 109 ~2001!; Phys. Rev. E67, 027302~2003!.
5O. L. De Lange and R. E. Raab,Operator Methods in Quantum Mechanics~Clarendon, Oxford, 1991!.
6V. B. Matveev and M. A. Salle,Darboux Transformations and Solitons~Springer-Verlag, Berlin, 1991!.
7D. L. Pursey, Phys. Rev. D33, 2267~1986!; A. Anderson, Phys. Rev. A43, 4602~1991!.
8A. Gonzalez-Lopez and N. Kamran, J. Geom. Phys.26, 202 ~1998!.
9E. Witten, Nucl. Phys. B202, 253~1982!; L. E. Gendenstein and I. V. Krive, Sov. Phys. Usp.28, 645~1985!; F. Cooper,
A. Khare, and U. Sukhatme, Phys. Reports251, 267 ~1995!.

10A. Mostafazadeh, J. Math. Phys.43, 205 ~2002!.
11A. Mostafazadeh, Nucl. Phys. B640, 419 ~2002!.
12F. Gesztesy, J. Funct. Anal.117, 401 ~1993!; F. Gesztesy and G. Teschl, Proc. Am. Math. Soc.124, 1831 ~1996!; F.

Gesztesy and G. Teschl, J. Diff. Eqns.128, 252 ~1996!.
13M. Proctor, Astron. Nachr.298, 19 ~1977!.
14T. Ya. Azizov and I. S. Iokhvidov,Linear Operators in Spaces with an Indefinite Metric~Wiley-Interscience, New York,

1989!.
15H. Langer and C. Tretter,Operator Theory: Advanced Applications~Birkhauser-Verlag, Basel, 2001!, Vol. 122, p. 331.
16A. Mostafazadeh, J. Math. Phys.44, 974 ~2003!; C. M. Bender, D. C. Brody, and H. F. Jones, ‘‘Must a Hamiltonian

hermitian?,’’ hep-th/0303005.
 20 Jun 2003 to 141.30.124.127. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



s
-

l

-

lus of

3111J. Math. Phys., Vol. 44, No. 7, July 2003 Isospectrality of spherical MHD dynamo operators

Downloaded
17A. Mostafazadeh, J. Math. Phys.43, 2814~2002!; 43, 3944~2002!; Mod. Phys. Lett. A17, 1973~2002!; J. Math. Phys.
43, 6343~2002!.

18S. Albeverio, F. Gesztesy, R. H. Krohn, and H. Holden,Solvable Models in Quantum Mechanics~Springer-Verlag, New
York, 1988!.

19V. I. Gorbachuk and M. L. Gorbachuk,Boundary Value Problems for Operator Differential Equations~Kluwer Aca-
demic, Dordrecht, 1991!; E. M. Russakovskii, Linear Algebra Appl.212Õ213, 437 ~1994!.

20A. Dijksma and H. Langer, ‘‘Operator theory and ordinary differential operators,’’Lectures on Operator Theory and it
Applications, American Mathematical Society Fields Institute Monographs.~American Mathematical Society, Provi
dence, RI, 1996!, Vol. 3, p. 75.

21A. S. Markus, Introduction to the Spectral Theory of Polynomial Operator Pencils, Translations of Mathematica
Monographs~American Mathematical Society, Providence, RI, 1988!, Vol. 71; Yu. S. Abramov,Variational Methods in
the Theory of Operator Pencils — Spectral Optimization~Leningrad University Press, Leningrad, 1983!.

22I. C. Gohberg and M. G. Krein,Introduction to the Theory of Linear Nonselfadjoint Operators, Translations of Math-
ematical Monographs~American Mathematical Society, Providence, RI, 1969!, Vol. 18; T. Kato,Perturbation Theory of
Linear Operators~Springer-Verlag, Berlin, 1980!; H. Baumga¨rtel, Analytic Perturbation Theory for Matrices and Op
erators ~Akademie-Verlag, Berlin, 1984!, and Operator Theory: Advanced Applications~Birkhäuser-Verlag, Basel,
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