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Isospectrality of spherical MHD dynamo operators:
Pseudo-hermiticity and a no-go theorem
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The isospectrality problem is studied for the operator of the spherical hydromag-
netic a?-dynamo. It is shown that this operator is formally pseudo-Hermitian
(J-symmetrig and lives in a Krein space. Based on theymmetry, an operator
intertwining Ansatz with first-order differential intertwining operators is tested for
its compatibility with the structure of the?-dynamo operator matrix. An intrinsic
structural inconsistency is obtained in the set of associated matrix Riccati equa-
tions. This inconsistency is interpreted as a no-go theorem which forbids the con-
struction of isospectral>-dynamo operator classes with the help of first-order
differential intertwining operators. @003 American Institute of Physics.
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[. INTRODUCTION

The magnetic fields of stars and planets are generated by the homogeneous dynamo effect in
moving electrically conducting fluidsThis effect is explained within the framework of magneto-
hydrodynamic§MHD), but its experimental demonstration was missing until recently. In 1999,
the first successful dynamo experiments in Riga and Karléropened up a new way for the
laboratory investigation of homogeneous dynamos. In connection with the data analysis for the
existing experiments and the design of new dynamo experiments there is a growing interest in the
spectral properties of dynamos. Of particular interest is the question of whether isospectral dyna-
mos can exist. The first numerical results on this topic were published in Refs. 3, 4, but rigorous
results are still missing.

As a step towards clarification of this issue, we study in the present paper the question of
whether operator intertwining techniques from quantum mech&@ibb can be adopted to MHD
dynamo models. In case of an affirmative answer we would obtain an efficient tool for construct-
ing isospectral classes of MHD dynamo operators. Otherwise we would get a no-go theorem
which would forbid a straight analogy with quantum mechanical models.

Let us start by recalling some essentials of operator intertwining transformations mTgl.
operatorsH, andH, are said to be intertwined if there exist operatars andA_ so that

HiA.=A.Hg, A_H;=HoA_. 1)
For the corresponding eigenfunctiotg and ¢, holds, up to normalization,
d1=Asdo,  A_d1= o,
and the operatorsly andH, are isospectral, except for those states that are annihilatéd kyr
A_ . In the case of one-dimensional Sctlimger operator$d = p?+ Vo(x) andH;=p?+V;(x)

with the momentum operator given @s= —id,, the intertwining operators can be chosen as
first-order differential operators,
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A,=A:=ip+f, A_=AT=—ip+f. 2

Structural compatibility oHg andH; with the intertwining relation$l) requires that the function
f(x) and the potential¥(x), V,(x) are connected by the consistency conditions

V1:V0+2 f’,
—f'+f2=V,—E, €)
f'+f>=V,—E, (4

where the prime denotes differentiation with respeciktoand E is a constant of integration.
Linearization of the Riccati differential equatio3), (4) shows that this constant can be inter-
preted as eigenvalue of the Sctiimger operator$l, andH,,

X’

Hoxo=Exo, for f:——O, ©)
Xo
X/

Hixi=Ex;, for f=2%, (6)
X1

where y, and y; are formal, and not necessarily normalized eigenfunction$igfand H,,
respectively. They are connected by the product relation

XoX1=C, (7)

with ¢ a nonvanishing constant. It is straightforward to verify that the shifted Satger opera-
tors are factorizable in terms of the intertwining operators,

Ho—E=ATA, H;—E=AA"

First-order differential intertwining transformations of typ@) are known as Darboux
transformation$and are widely used to generate isospectral operator classes from given operators
with known spectr&.® In particular, intertwining constructions are a basic ingredient of super-
symmetric quantum mechanical modélsand their generalizations to pseudo-supersymmetric
systems%! As it was demonstrated in Ref. 12, a double-intertwiniidguble commutation
method can provide a tool for inserting additional eigenvalues in spectral gaps of given back-
ground Schrdinger and Jacobi operators.

Motivated by the large number of exact results on isospectral classes obtained by operator
intertwining constructions, it is natural to investigate whether MHD dynamo operators are also
suitable for this technique. For this purpose we study in the present paper the simplest mean-field
MHD dynamo configuration—the sphericaf-dynamo! In terms of the radial momentum opera-
tor p=—i(d,+1/r) the 2xX2 operator matrix of ther’-dynamo is given as

[(I+1
e 0D )

Hi[a]= : (8)

I(1+1) 2_I(I+1)

pa(f)PJra(f)T Pz

and lives on the domain

D(ﬂu[a]%:[w:(g;): ye H=HoOH, H=L,(Q,r2dr),
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Q:[O,l], w(l)zoa rw(r)|r~>0_)0}’

in the Hilbert spacé. (A brief outline of the derivation of the->-dynamo operator matrix from

the MHD mean-field induction equation can be found in the Appehdiixdescribes the coupled
I-modes of the poloidal and toroidal magnetic field components in a mean-field dynamo model
with helical turbulence function(r). The functiona(r) does not depend dnand we assume that

it is real-valued, positive definite, bounded, and sufficiently smootionm «=0, 0<a=c,

<®, ae CHQ). The idealized boundary conditiog(r=1)=0 corresponds to a super-
conducting spherical boundary shell and is chosen here to ensure simplicity of the subsequent
considerationd® For more realistic models with a close relation to stellar dynamos, the spherical
fluid configurations confined to<1 can be assumed as embedded in empty space. The boundary
condition should then be replaced Byy|,_,=0 with B,=diaq 4, +(1+1)Ir,1] (see, e.g., Ref.)1

what will require a more general approach than that presented in the present paper.

Exploring the fundamental symmetry of thé-dynamo operator matrix we find in Sec. Il that
H[a] acts as a symmetric operator on the Hilbert spatavhen this is endowed with an
indefinite metricJ. That means thex’-dynamo operator matrix is d-symmetric (formally
J-self-adjoin} operator,

Aila]=HA{la]:=3A[ ]9,

living in a Krein spacek.=H,;.* J-self-adjointness is a natural property of operators from dif-
ferent fields of physics. Examples are, e.g., the super-symmetric Dirac op@rRfbrsymmetric
non-Hermitian Hamiltonians in Q*®as well as the Wheeler—DeWitt operator for a cosmologi-
cal Friedman—Robertson—Walker model coupled to a real massive scaldf ke the recent
paper serigS'*117 of Mostafazadeh on non-Hermitian operators with real spedtself-adjoint
operators are also known as pseudo-Hermitian operators.

In analogy with the simple quantum mechanical model described above, we base our isospec-
trality analysis on an intertwining Ansatz for twe?-dynamo operators with helical turbulence
functionsag(r), a;(r),

Hi[ao]—El=—AA*, H, [a;]-El=-A%A,
and intertwining operator matrices, A¥ that are first-order differential operators,
A=iR(Np+Q(r), A*:=—ipR¥(r)+Q*(r).

This Ansatz leads to a set of six consistency conditions on the maRi{ggsandQ(r) which are
studied in Sec. Ill. It is shown that one pair of conditions fixes the structuR€9f in terms of the
helical turbulence functionaqy(r) and a4(r). A second pair is equivalent to the symmetry rela-
tionsB=B*, U=U* on the matrix functions

B:=R*Q,
U:=R[Q*-(R")']=RBR '~R(R")’,

and can be regarded as an implicit consequence ofJtpseudo-Hermiticity of the operator
matricesI:ho[ ap] andl3||l[a1]. (The prime denotes the derivative with respect toThe remain-

ing two conditions can be transformed into a pair of coupled matrix Riccati differential equations
(MREs) on B andU.

The consistency of the six conditions is analyzed in Sec. IV with the help of a step-by-step
reduction of their complexity. First, we conclude from the limiting behavior of the MREg for
—0 that the angular mode numbdgsandl; in the two dynamo operator matrices should be
connected by the incremental relatign=1,+ 1. Then we use th&symmetry ofB to derive from
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the coupled MREs a system of coupled nonlinear ordinary differential equa@iiss involving
the helical turbulence functionsy(r) anda4(r). Analyzing these ODESs, we are able to show the
existence of an inherent contradiction between them. As an implication, we arrive at a no-go
theorem which states that the six consistency conditions cannot be fulfilled simultaneously and
that, hence, the structure of theé’-dynamo operator matrices is not suitable for an operator
intertwining technique based on an Ansatz with first-order differential intertwining operators.

In the concluding sectioV) we briefly discuss some other methods which could be useful
for studying isospectrality issues of the dynamo operator matrix and which possibly could provide
a technique to construct classes of isospectral sphetfcalynamo operators.

II. J-SYMMETRY OF THE DYNAMO OPERATOR MATRIX

In this section, we study the fundamental symmelryf the o.>-dynamo operator matrifg)
which allows us to choose an appropriate Ansatz for the intertwining operatoendA _ .
We start our consideration by introducing the auxiliary operator

I(1+1)
Qlal=pap+a——73—,

defined on the domain

D(Q)={¢: deH=Ly(Q,r?dr),¢(1)=0, ré(r)|;_o—0},

in the Hilbert spacé<{. The operatoQ[ «] is a formally self-adjoint singular differential operator
Q=Q" which acts as symmetric operator & [In the subsequent compatibility analysis of the
operator intertwining construction we restrict our attention to symmefoienally self-adjoinj
operators. For simplicity, we leave questions of self-adjoint extensions and corresponding gener-
alized boundary condition%® for the bi-component functiong aside] In terms of Q[ a] the
dynamo operator matrix and its formal adjoint read as

-Q[1] «a —Q[1] Q[a])
Qla]  —Q[1] a  —Q1])’

so that the fundamenté&tanonical symmetry can be obtained as

Hma]:( ) Hlal=
X —_O# gt _ 01
Aile]=Hf[a]=JA[lald, J=| ] (9)

Diagonalizing the matrix,

1
J-7=SJS S=—
V2

1 -1 1 0
1 1) "lo -1/
we see thatl|[ a] is equivalent to the operator matrix,

Qla—2]+« —Qla]+a
Qlal-a Q[-a—2]-a

. A 1
H[a]=S"H [a]S= f(

with the propertyH,[ «]= 7H,[ «]"%. The fundamentah-symmetry of the operator matrkt,[ «]
implies thatD(H,) could be endowed with the indefinite metrig so thatH,[a] becomes a
symmetric operator oﬂD(H,). Due to the invariance of the signature under the transform&ion

the domaier(Fh) can also be endowed with a natural indefinite inner profluct]; defined by
the metricJ,
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[x,y13:=(x,Jy), x,yeH=H&H,

where (,-) denotes the usual innéscalay product in the Hilbert spac&{. This means that
H\[a] is aJ-symmetric operator which acts as symmetric operator in a Krein s'ﬁaxfEJ,

[Ax,yl=0xHfyl;.

[For surveys on operators in Krein spackibert spaces with additional indefinite inner product
structureywe refer to the mathematical literatut®2% From its operator-matrix representatit
we see thatl is self-adjoint, involutory and unitary,

=3, J%=1, J7'=77,

so thatH,[ a] is aJ-pseudo-Hermitian operator in the sense of Refs. 10, 11, 17.

The eigenvalues af-pseudo-Hermitian operators are knd#t?°to be either real or to come
in complex-conjugate pairs. Here we illustrate this property by passing from the eigenvalue prob-
lem for the linear operator pencil,

Lila N ]gs=(H[a]—\) =0,

to the eigenvalue probler[ a,\]#,=0 for the associated quadratic operator pehgiky,\].
This pencil can be derived explicitly from the Ansatz

i

~l1
" S rer e

with «(r)#0. As result we obtain

1
Lila M= [QI1]+N]—[Q[1]+N]=Qla] ¢1=0

= (Az)\2+Al)\ +A0) l//]_: 0

The operators

1 1 1 1
Ao=QI1]1=Q[1]-Qlal, A;=Q[1]-+-Q[1], Ap==,

are formally self-adjoint onD(Q) so that the functionals;:=(A;#1,¢4), j=1,2,3 are real-
valued: Ima;=0.
From the quadratic equation

(Lila, Ny, 1) =aN?+ah+ap=0,

we conclude that the eigenvalues of th@seudo-Hermitian dynamo operator matHx and its
associated pencll; occur as eigenvalue paits,

1
)\i=g(—ali \/a21—4a0a2).
2

Obviously, the sign of the discriminar =:a§—4a0a2 defines whethei . are both real or
pairwise complex conjugate. The transition from real eigenvalue$o complex ones occurs at
A=0 where the eigenvalue becomes two-fold degenexate \ - =\,=— a,/2a,. This general
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behavior of\ . confirms the results of numerical simulatichshich showed that a scaling of the

helical turbulence functior leads to a pairwise intersection of real eigenvalue brancheis afd
a transition at the intersection points to a pair of complex conjugate eigenvalues.

We note that at the two-fold degenerate poiktsof the spectrum withA=0 a Jordan—
Keldysh chaif? exists for the linear operator pencil,

Lixg)#=0, Li(ho)x=1u,
as well as for the quadratic operator pencil,
LiAo)#1=0, Li(No)x1td\Li(No)¢1=0.

Both are built up from eigenvectokg ¢, and associated vectogs x1, respectively.

[II. CONSISTENCY CONDITIONS AND MATRIX RICCATI EQUATIONS

The fundamental-symmetry (-pseudo-Hermiticity of the a>-dynamo operator matrix pro-
vides a natural Ansatz for an intertwining construction which respects this symmetry:

Hi[ao]—El=—AA*, H [a]-El=—A%A, (10)

In general, the operator matré could be amth-order differential operator of the form

A=k21 Re(r)(ip)*+Q(r),

with 2X 2 matricesR,(r) andQ(r) as coefficients. For simplicity, we restrict our attention in the
present paper to the first-order differential operator,

A=iR(r)p+Q(r), (12)

with J-adjointA* = —ipR*(r)+ Q*(r). Here we define th¢ -operation for a given 2 2 matrix
C as

ct=3cly=3c*7y.

An asterisk and superscript™ denote complex conjugation and transposition, respectively.
Let us introduce the abbreviations

Koa=l—agio-,

loa(lo1t1)
Mg 1:= 0,1—r2_+ El-agq04,

with the nilpotent matrices .. defined as

ofs Yol

The shifteder®>-dynamo operator matrices {10) take then the short form

Hi, @01 —El=—pKop—Mo;. (12)
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Substituting(11) and(12) into the intertwining Ansatz10), making use of commutation relations
like [p,R(r)]=—iR’(r) and equating the coefficient matrices of fife p, | terms we obtain the
following six consistency conditions:

I:||0: p% RRI=K,, (13
p: RQ*—QR*—R(R¥)'+R'R*=0, (14
I: QQ*—R(R*)"+R(Q")' —Q(R*)"=My; (15
H p*% RR=Kq, (16)
p: —R*Q+Q*R=0, 17
I: Q*Q—(R*Q)'=Mj. (18)

For a successful intertwining construction these matrix equations should be fulfilled simulta-
neously. So, the main task consists in finding explicit solution set€l®)¢(18). Alternatively, we
should obtain intrinsic contradictions within this equation system which could be interpreted as a
no-go theorem forbidding this construction fef-dynamo operator matrices.

We start our analysis with Eqg13) and (16). From the tautologieRR*R=RR*R and
R*RRf=R*RR follows:

RK;=KoR, K;R*=R*K,,

what with

i1 T2 "
R= , R¥=
F21 T2

* *
2o rlZ)
* *
o g

yields

@y fqgp T
ri,=0, —=-—=—. (19
7)) I’22 r22

Hence, we can set
ri=rule'”,  rp=lre'?,  ry=|ryle! e
Using this and(19) in

9, | 2 9|

RR =K,=
0 (_CYO l _lel 1

we find

* 0

Qg

1 ) [£75) '
— =Vaga(l+itane) —
2 aq

R= ei b% (20)

where the phaseg ande are still undefined.
As a next step we analyze Eq44) and(17). It is easily seen that defining the matrices
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U=RIQ*~(R")'], B:=R*Q, (1)
these equations are equivalent to theymmetry relations
u=u# B=B*

Due to the different symmetry content 8f and Q it is natural to consideB as the primary
structural element of the intertwining construction, &a@s a secondary one. So, we perform our
subsequent investigation in termsB®andR. Explicitly, the J-symmetry is realized by the matrix

structure
b, +iby b,
= . , Imb,=0, k=1,...,4. 22
by by—ib,)w 7K (22
Furthermore, we exclud® from (21) to obtain
U=RBR '-R(R*)’. (23

Introducing the notatiolN:=R™ 'R’ and substituting(23) into the symmetry relatiotd=U"*
yields the additional constraint

[B.KI=N*=N. (24
From Eq.(20) we find
., -q 0
N=ivy'l + ¢ al’
llay o)
q—i(a—o‘z)’ 29
fo ay | ag 141 o8 26
= ?a’_o( +|tans)+|00528, (26)

so that(24) transforms to

b, O .
a1 —2|b4 —b2 —_2|’)’ | +

2q 0
f*—f —2q/°
Finally, we arrive at the following restrictions on the phasand the components, andb, of the
matrix B:

'—o b_2q b_Imf_ 1
Y =Y Z_a_la 4_a_l__§

@ g’
—tane + ——|.
ag cos e

(27)

Summarizing the implications of the first four consistency conditions, we see that they are free
of intrinsic contradictions. From the initially eight arbitrary complex-valued functions contained in
the matriceRk andQ, only the three real-valued functionb,(,bs,¢) are still undefined. Together
with the helical turbulence functionsf, ;) and the constantsyE,lq,l) € szZi, we expect
them to be highly fine-tuned by the remaining two consistency conditibf)sand (18).

Let us study these conditions now. Making use of the definitions @nd B in (21), their
implications

Q*—(R¥)'=R U, (29)
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(Qﬁ)/ _ (Rﬁ)u: _ R—lRIR—lu + R_lU,,
Q=(R*)"'B, (29)

and setting at the ed@R* =K, R*R=K according to Eqs(13), (16), we find that(15) and(18)
transform to the matrix Riccati equatiofl§|RES)

U’'=Mg—UK,'U, (30)
B'=—M;+BK;'B. (31

Similar to the linearization of the scalar Riccati equations mentiond8)in(6) of the Intro-
duction, the MRES30), (31) can be linearized by an Ansatz?*

U=VW i V,We(??  de(W)+#0, (32
B=XY"!, X, Ye(?? de(Y)+0. (33

As result we arrive at the equation systems

o S R e

bl

are defined up t&L(2,C) X GL(2,C)-transformations

9

and can be interpreted as homogeneous coordinates of two points on a complex Grassmann
manifold G,(C* which consists of 2-dimensional complex subspace&®itisee, e.g., Refs. 23,
24). The matricesU=VW ! andB=XY ! are the corresponding affine coordinates of these
points.

Differentiating(34) and substituting/ =K W', X=—K,Y’, it is easily seen that the equation
systemg34) are equivalent to the second-order matrix differential equations,

The 4X 2 matrices

E‘C4><2

VG, X
WGy)" Y

_(xel

YGl), Go,G]_EGL(Z,C),

(C?rKOar_ Mo)W: O,
(35
(9,K19,—M7)Y=0.

This implies that the matricé&/=r W, Y=r 1Y should be formal(non-normalizetl solutions
of the eigenvalue equations for the dynamo operator matI:ik;g{Sxo], I:I|1[a1], respectively,

Hi [ao]lW=EW, H [a;]Y=EY.

A comparison with the simple QM model from the Introduction shows that the intertwining

operator matrixA should be expressible in terms W or Y, and thatw and Y should be
connected by a product invariant liké). With the help of(28), (29) and (34) we find

A=R(ip— Y'Y H)=(ip+ KWW K;HR.
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In order to obtain the product invariant which conneé¥sand Y, we use a slightly modified
version of(23),
U=RB*R '—R(R¥),
and substitute froni32)—(34),
U=RR'W'W™!, Bf=—(YHLY#)'R'R,

so that

WW™ = — (R THYH) THYH) R = (RF) TH(RF) " (36)

This equation is of the typg=g;n, (4,9)g *=(4,91)9; >+ 9:(4,n)n"1g; L. Hence, integration
of (36) yields the product invariant,

Y#R*W=C, de(C)+#0,

with C a constant nonsingular matrix.

So far, we have obtained a 1:1 generalization of the intertwining technique from the simple
QM example described in the Introduction to dusymmetric dynamo operator model. It remains
to test whether the MREs of this model are consistent. This will be the subject of the next section.

IV. NO-GO THEOREM

In order to test the pair of MRES0), (31) for consistency, we make use @&3), (24) as well
as the relation

N+KI'NFK; =K 'Ki=K],

and transform the MRE fdu [Eq. (30)] into an equivalent MRE foB. As result, we arrive at the
following pair of MREs:

B'=R M R—K; BB+BK,+[NN*+(N*)"]K,, (37)
B'=-M;+BK;'B, (39

which should be satisfied simultaneously. The corresponding consistency test will be performed in
two steps:

(1) From the limiting behavior at—0 we will derive a relation betweely andl .

(2) We will extract from Eqs(37), (38) a system of nonlinear ODEs for the helical turbulence
functions e, @, and for the components, ,...,b, of the matrixB. By mutual substitutions of
these ODEs we will find an inconsistency which can be interpreted as a no-go theorem.

A. Limiting behavior at r—0

From the assumed nonsingular behavior of the helical turbulence functiors @tfollows
that they can be approximated as

ao'l(r—>0)%COYl+aoylr+O(r2) y Coylio.

Substituting this approximation in a slightly rewritten version of the defining equéd®rfor the
matrix Y,

|1(|1+1)|_< E —al)

|07~ afo_d,— 2 Y=0, (39

ay E—ai
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we obtain the estimate
a
Y(r—0)~r—h I+?la_r+(’)(r2) (rd1tlc, +C ),

whereC_ , C_ are arbitrary nonsingular constant matrices @ej¢0. Correspondingly, it holds

_ _ a
Z:=Y'Y l=—Iyr lIJr?a_Jr(’)(r), (40)
B=—K,Y'Y I=l;r U —[cilr *+ (I +1/2a;]o_+O(r). (41)

A comparison of(41) with (22) shows that the componenits andb, of the matrixB vanish at
least as

b,,b,~O(r), for r—0.

Furthermore, we find with the help of Eq®5), (26) and (27) thatg~O(r) and, henceay/cg
=a,/c;, as well asq’,f,f'~O(1) which impliesN,N*,(N*)"~O(1).

We are now well prepared to perform a partial consistency te@®fand(38) by comparing
the singular terms of these equations in the vicinity of the origi0. From the MRE<37) and

(38) we find
1y , lo(lo+1) -1 /
—KyKiZ-2'= T =K 12K Z - ZK - O(1), (42)
(1,41
—K;lKiz—z':—l(l—z)|+zz+O(1), (43)

respectively. Substituting from (40) and equating the coefficients of the2,r ~-terms we
obtain from Eq.(42),

Il:|0+11 al:O,

and, hence, alsay=0. Equation(43) is automatically satisfied, becaudeis defined by the
corresponding linearized equatig®9). The incremental relatiohy=15+1 is well known from

ladder operator constructions for spherically symmetric Hamiltonians i’ @Ns is not surpris-

ing, because this ladder operator construction can be recovered from the intertwining construction
(10) for the a>-dynamo operator matrices by the two-step transitionygs a1 =a, 2. a—0.

B. Systems of coupled nonlinear ODEs and their inconsistency

The system of eight coupled nonlinear ODEs for the comportents. b, of the matrixB is
easily obtained from the MRES87), (38), e.g., with the help of the matrix multiplication package
of MATHEMATICA ©. For our analysis it is sufficient to consider only the simplest four equations of
this system, i.e., the-,. andl projections of(37) and (398):

by=2b,b,+ ay(1+b3), (44)
2
)

= —Zblbz— a—, (45)

1
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[,(I;+1
b1=bf+b2b3—b§—E—Lrlz—)+a1b1b2, (46)
2 2 IO(IO+1) ’ a(z) ' 2
= bbby DI +E+ S —albyt A —qh (47

Equating the right-hand-sides @f4), (45) and usingd,=2q/a; from (27) we are able to express
b, as

49°+ ag+a?
by= - ————*,

5 (48)

Taking into account thaq = d,In(ay/ay)/2 according ta25) and that the helical turbulence func-
tions ag and @, do not depend oiy, or |; we conclude from Eq(48) thatb,; should not depend
on |y or I, too. On the other hand, the addition @f6) and (47) together with the relatio,
=1,—1 gives

!

2
@1} %o
bi— —|+—=+9' -0
1 a 2 q q

2b1:—7}+2q

which by integration leads to a functidn which depends ob,. That means, the term depending
on |I; cannot be compensated by a combinationl pfndependent terms. This is an obvious
contradiction to(48) and we have to conclude that the consistency condiiib8s-(18) cannot be
fulfilled simultaneously. This means that we are lead to the
No-go theoremThe structure of the MHDx?>-dynamo operator matrix is incompatible with
an operator intertwining technique which is based on first-order differential intertwining operators.
A similar situation occurs also for three-dimensional spherically symmetric models iR QM.
There thel-dependent centrifugal term sets so strong restrictions on the form of the allowed
potential that an intertwining construction built on first-order differential intertwining operators is
only possible for the following three cases: the constant potekfifa)=const, the Coulomb
potential V(r)o<1/r, and the potential of the three-dimensional isotropic harmonic oscillator with
V(r)=r2. Richer classes of allowed potentials are only found for models in thsiates, when
| =0. Such states ar priori excluded for thex?-dynamo operator matrix due to its construction
[see Eq(A5)].

V. CONCLUDING REMARKS

In the present paper, we have tested the Mifedynamo operator matrix for its compatibility
with the simplest variant of an intertwining construction basedirst-order differential intertwin-
ing operators. The operators have been chosen in accordance with the fundalvsymtahetry
(pseudo-Hermiticity of the operator matrix and lead to a set of six matrix equations as consistency
conditions. With the help of a step-by-step reduction of the complexity we have extracted their
basic structural elements and have shown that they contain an intrinsic inconsistency. So, we have
to conclude that the structure of the’-dynamo operator matrix is not compatible with the
considered first-order differential intertwining Ansatz. This fact is the subject of the formulated
no-go theorem.

It remains to test whether intertwining constructions can be built from second-order or higher-
order differential intertwining operators. Energy shift operators based on second-order differential
expressions are known for harmonic oscillators with time-dependent frequencies and additional
1/r?-tern?® as well as for the spherically symmetric oscillator and the Coulomb poténial.
generalization of the technique to the MHEF-dynamo operator matrix seems realistic.

Another approach for a clarification of the considered isospectrality problem could consist in
a generalization of the Gelfand—Levitan technique for vector-valued Sturm—Liouville proBiems.
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Concerning its general structure, thé-dynamo operator matrixl,[ a] is a singular non-self-
adjoint matrix Sturm—Liouville operator which by a unitary transformation can be recast into the
standard form

—0,Po(r)d,+Py(r).

In 1998, Jodeit and Levitdh analyzed the isospectrality problem for matrix Sturm—Liouville
operators withP,(r)=1 and Py(r) a symmetric matrix. They showed that if two vector-valued
Sturm—Liouville problems are isospectral then the eigenfunctions of one problem can be con-
structed from the eigenfunctions of the other problem with the help of a matrix Gelfand—Levitan
transformation. So, a generalization of this technique to Sturm-Liouville problems with nonsym-
metric Py(r) and P,(r)#1, would naturally cover the isospectrality problem for the MHD
a?-dynamo operator matrix.
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APPENDIX A: DERIVATION OF THE a?-DYNAMO OPERATOR MATRIX FROM THE
MEAN-FIELD INDUCTION EQUATION

For completeness we sketch here the main steps of the derivation oktReo@erator matrix

H,[ a] for a model with helical turbulence functios(r). The outline follows the technique for
models witha=const as presented in Ref. 1.

The spherical MHD mean-field2-dynamo in its kinematic regime is described by the induc-
tion equation for the magnetic field,

B=VX(aB)+rv,AB, (A1)

supplemented by the conditiovi-B=0. The magnetic diffusivityv,, is assumed to be constant
and the helical turbulence functiamto depend only on the distance from the origis a(r).
Decomposition into toroidal and poloidal componeBts B;+ B, and settingB,=V XA, allows
for a decomposition of the induction equatiohl):

B =VX(aVXA)—r,VXVXB,, (A2)
A= aB— v, VXV XA, . (A3)
Furthermore, the fieldB; and A, can be represented as
Ai=—rXVF;, B=-rXVF,,

whereF; andF, are single-valued scalar functions which are normalized on the unit sphéxe
the condition

Jsz':lvz dw=0. (Ad)

With the help of the relations

A(I’XVFl):rXVAFl,

1

Downloaded 20 Jun 2003 to 141.30.124.127. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



3110 J. Math. Phys., Vol. 44, No. 7, July 2003 U. Gunther and F. Stefani

arXVF2=I’XV(aF2),
Egs.(A2) and (A3) can be rewritten as

rXV[VmAF1+ an—&tF1]=O,

1
rXV|iv,AF,— F(ﬁra)(ﬁrrFl)—aAFl—ﬁth =0.

It follows that the expressions in the square brackets are functionsanflt alone which must
vanish due to the normalization conditioh4) and its implication/ 2AF; , dw=0. By re-scaling
of r andt one sets the magnetic diffusivity to unity,,=1 and the boundary conditions at
=1

With the help of a series expansion in spherical harmonics,

Fio= > M) Y(6,¢) e LAQ,r?dr)e L3S, dw), Q=[0,1],
I,m,n '

one obtains the eigenvalue problem

AFS™) 4§ ™=y, FEm

1
AFS™ == (0,a) (0T F ™) —aA P =) FY ™.

Here we used the notatiaky = (1/r?) 9,r2d,— | (1 +1)/r? and the fact that due to the symmetry of

the dynamo configuratidrthe eigenvalues, , depend only orh andn. We note that the normal-
ization condition(A4) implies

F{z0mm—p. (A5)

Finally, the substitutionsp=—i(d,+1/r), ¢1,=F{3™eL2(Q,r2dr) lead to the eigenvalue
problem for thea?-dynamo operator matriki,[ «] as it is given in Eq(8) of the Introduction.
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