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Abstract

The evolution speed in projective Hilbert space is considered for Hermitian
Hamiltonians and for non-Hermitian (NH) ones. Based on the Hilbert—Schmidt
norm and the spectral norm of a Hamiltonian, resource-related upper bounds
on the evolution speed are constructed. These bounds are valid also for NH
Hamiltonians and they are illustrated for an optical NH Hamiltonian and for a
NH P7T -symmetric matrix Hamiltonian. Furthermore, the concept of quantum
speed efficiency is introduced as measure of the system resources directly spent
on the motion in the projective Hilbert space. A recipe for the construction of
time-dependent Hamiltonians which ensure 100% speed efficiency is given.
Generally these efficient Hamiltonians are NH but there is a Hermitian efficient
Hamiltonian as well. Finally, the extremal case of a NH non-diagonalizable
Hamiltonian with vanishing energy difference is shown to produce a 100%
efficient evolution with minimal resources consumption.

PACS number: 03.65.Aa

(Some figures may appear in colour only in the online journal)

1. Introduction

Non-Hermitian (NH) models naturally emerge in many fields of physics as efficient tools for
the description of complicated large systems in terms of smaller effective subsystems [1, 2].
Examples range from atomic/molecular physics [3, 4], light propagation in optically active
crystals [5] and media with anisotropic pumping and absorption [6—16] over microwave cavities
[17, 18], coupled electronic circuits [19, 20] up to mechanics [21, 22], hydrodynamics [23, 24]
and magnetohydrodynamics [25-28]. Apart from the spectral properties of the Hamiltonians,
the evolution processes generated by NH Hamiltonians can significantly differ from those
generated by Hermitian Hamiltonians [5, 29-32]. In this regard it appears natural to ask what
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new possibilities NH evolution entails and what bounds can be broken when a Hamiltonian is
no longer Hermitian.

For example, it was shown in [29] that a NH 2 x 2 matrix Hamiltonian with some predefined
energy difference can generate a much faster evolution than a Hermitian Hamiltonian with the
same energy difference. The evolution speed is the rate in which a state changes into other
states (e.g. the angular speed of the state vector on a Bloch sphere). In the Hermitian case, the
energy difference sets an upper bound on the evolution speed (the Fleming bound [33]). The
clear violation of this bound in BH system demonstrated in [29] leads to the conclusion that
these energy-difference based bounds should be replaced by some more adequate bounds for
NH systems.

The first goal of this paper is to derive an upper bound on the evolution speed that works
for any Hamiltonian, be it Hermitian or NH. The bounds derived here may not be tight for
some Hamiltonians and/or for some initial conditions, but this statement is equally true for the
Hermitian Fleming bound.

This leads directly to the second goal of this paper: to show how to construct Hamiltonians
for which the evolution speed of the state of interest reaches the upper bound for any instant of
the evolution. We call these Hamiltonians ‘maximal efficiency’ Hamiltonians (or maximally
efficient Hamiltonians). For every state evolution there exists a family of Hamiltonians that
are maximally efficient. This family contains both Hermitian and NH Hamiltonians.

Our third goal is to explore a very special Hamiltonian in this family which is of rank-
1, non-diagonalizable and similar to a Jordan block with zero-eigenvalue. This Hamiltonian
corresponds to a NH degeneracy called exceptional point (EP) which has only one (geometric)
eigenvector [1, 21, 34]. We show that any state evolution can be generated solely by such NH
degeneracies yielding an EP-driven evolution (EP-DE). This special evolution minimizes the
Hilbert-Schmidt norm )~ ; |H; j|* of the matrix Hamiltonian 7.

We note that the second goal strongly differs conceptually from the so-called quantum
brachistochrone problem. In the quantum brachistochrone problem the goal is to find the (time
independent) Hamiltonian which evolves some predefined initial state into some predefined
final state in a minimal time. This problem was the subject of intensive studies during the last
few years for Hermitian systems [35-37] as well as for NH ones [29, 30, 38—44]. As shown
in [35, 36, 45] for Hermitian systems, the corresponding minimal-passage-time trajectories
correspond to geodesics in projective Hilbert space (PHS). For the evolution problems we are
investigating here, the trajectories in PHS are predefined and not necessarily geodesic. Instead,
we are searching for Hamiltonians capable of producing evolution processes which exactly
follow these predefined trajectories with minimal resources. That is, we look for efficient
evolution and not for a fast evolution. In fact, our optimization problem is closer in spirit to
the reverse engineering approach used to quicken adiabatic evolution [46-48]. Yet there are
two main differences: the first difference is that in our case we seek only Hamiltonians which
yield maximal efficiency. The second difference is that we take as input only the evolution of a
single state (the state of interest), while in [46—48] the number of states needed to be specified
is equal to the Hilbert space dimension (number of levels in the system).

The paper is organized as follows: section 2 contains some basic facts on the evolution
speed in PHS. In section 3, the Hilbert—Schmidt norm and the spectral norm of a Hamiltonian
are introduced as upper bounds on the evolution speed. In section 4, the concept of speed
efficiency is introduced, and for the predefined evolution of a given state a family of
Hamiltonians is constructed which ensure a speed efficiency of 100%. The generic properties
of maximally efficient evolutions are explored. Section 5 is devoted to the special case of a
maximally efficient evolution which is driven by a Hamiltonian at an EP (a NH degeneracy).
In appendix A, for completeness we briefly discuss the relation between Bloch sphere and

2



J. Phys. A: Math. Theor. 45 (2012) 415304 R Uzdin et al

PHS. In appendix B, the norm speed bounds are illustrated for a Hamiltonian that describes
two optical systems recently studied. In appendix C, the norm speed bound is applied to the
matrix Hamiltonian of a P7 -symmetric quantum brachistochrone.

2. Preliminaries—the evolution speed in projective Hilbert space P($))

Let |) € $ = CV be a solution of the time-dependent Schrodinger equation (TDSE):

10, 1yr) = HOIY), (L
where H(t) # H'(t) € C¥*V is the matrix of the corresponding time-dependent NH
Hamiltonian. Defining the bra-vector (| in a standard way* as (¥/| = |¥)T, the adjoint
TDSE has the form

— iyl = (WIH ©). 2)

Our main interest is to study the rate at which states evolve into different states. Phase
evolution is irrelevant for this purpose. It makes sense, then, to study the evolution of states in a
space where the phase is eliminated. The so-called PHS is exactly suited for this purpose. The
well known Bloch sphere for two-level systems is closely related to PHS (see appendix A), but
strictly speaking it is not a PHS. For the reader not familiar with PHS we provide a simplified
and very limited presentation of the basic ideas needed to understand the present work. For a
more complete and rigorous treatment see, e.g., [49].

The angle ® between two complex vectors [y), [2) € CV can be obtained from the
standard inner product of the two vectors:

|(Yri[y2)| 3)
VTV Wl

The angle ©® acts as a measure of distance between two states: ® = (0 means the two states are
identical up to a complex factor and ® = 77 /2 indicates the states are mutually orthogonal®.

Now imagine that a state is infinitesimally changed from [¥) to |¢) + |dy¥) where
(¥|¥r) > (dy¥|dy). The angle between the original state and the modified state, d®, can be
obtained from (3). Keeping leading orders in |dy/) and d® we get:

go2 = \Wldy) Yyl {Yldy) asl. @

(Vi) (¥ly)?

ds%s is known as the Fubini—Study metric [49] which describes the length of an infinitesimal
arc traced on a unit hypersphere by changing a state by |dy). To quantify the rate at which states
change we will look at the evolution speed defined by: ] ‘L—(;’ | (or equivalently ‘ % ), which can
be interpreted as angular speed/frequency. This hypersphere is related to the PHS associated
with the Fubini—Study metric. All states which differ by a complex number are mapped to the
same point on the hypersphere (hence phase is immaterial in this space). The details of this
mapping are not important for the present paper. What is important is that the distance between
two states on the hypersphere which differ by |dy) is given by (4). Formally, the PHS of an
N-level system is denoted by P()) = CPV~! = CV/C, where C¥ = C" — {(0,0,...,0)},
C, := C — {0}. As the state |y/) evolves in time it traces a certain trajectory in P()) (i.e.
on the hypersphere associated with the PHS). We denote the trajectory induced by [¢) by
7 (|¢)) € P($H). Notice that for any complex function of time, c(¢) (c(t) # 0):

m(|¥) = m(c®)|¥)) &)

4 Unlike other choices often made for NH Hamiltonians in order to exploit the bi-orthogonality relations of the
eigenstates [1].

5 This is different from the Bloch sphere construction discussed in appendix A, where orthogonal states correspond
to the angle of 7 between antipodal points on the sphere.

cos® =




J. Phys. A: Math. Theor. 45 (2012) 415304 R Uzdin et al

Next we wish to establish a relation between the evolution speed |d‘;—§s| and the

Hamiltonian. Making use of the TDSE (1) and its adjoint (2), and introducing the normalized

state vectors |W) = [ (¢))// (¥ ()|¥ (t)), we find the squared evolution speed in P($)) is
given by:

dt
Henceforth, we refer to K (¢) as ‘kinetic scalar’ because it plays a structurally similar role to that
of the kinetic energy in classical mechanical systems. The expression (6) is a straightforward
generalization for NH Hamiltonians of the corresponding evolution speed discussed in [45, 49]
for Hermitian systems. We note that for those systems K (¢) just reduces to the instantaneous
energy variance K(t) = (W|H?(t)|W) — (W|H (t)|¥)%. Further insight into this expression
can be obtained by introducing an instantaneous orthonormal basis set {|k(t))}k"’:l eH=CV,
with |W) identified with one of its elements |V (z)) = |j(¢)), the kinetic scalar (6) in this basis
set takes the form:
N
K(j@)) = Y GIH K (I ) — GIHT)GIHL) = D KH])E > 0. (7)
k=1 ket j

dsrs 2_ " t _.
= (VIH' (DH@O|V) — (V[H ()| W) (V]H@)|WV) =: K(1). (6)

Obviously, K is characterizing the total rate for transitions from the given state |V) = |j) to
other states of the system. Splitting off the trace of the Hamiltonian

H="H+ ul, w = Tr(H)/N (8)

one immediately sees that K is invariant with regard to trace shifts®, K[H] = K[H]. Hence, we
can subsequently restrict our attention to traceless Hamiltonians 7. In appendix A, we discuss
the dynamics on the PHS-related Bloch sphere and obtain its relation to the kinetic scalar.

To conclude this section we would like to point out that equation (6) implies that if
H is Hermitian and time-independent, then the evolution speed is constant: & ] Brs ‘:0. This,
however, is not true for time-independent NH Hamiltonians.

3. Upper norm bounds on the evolution speed

The absolute values of the matrix elements of Hermitian or NH Hamiltonians are directly
defined by the intensities of interactions and the strength of the corresponding fields. Naturally,
a model remains valid only within the region of applicability of the corresponding underlying
theory and/or the applicability of the approximations made in the derivation of the model.
Hence, it is natural to ask for the maximal evolution speed achievable by a given quantum
system when the resources are limited.

3.1. The Hilbert—Schmidt-norm upper bound on the evolution speed
To obtain the first simple upper bound on the evolution speed we notice that:
K <(WIHHIW) < w(HH) = [[Hl s, ©)

where ||H||ﬁS is the Hilbert—-Schmidt norm of the Hamiltonian [50]. It is also known as
Euclidean norm, l,-norm, Schatten 2-norm, Frobenius norm and Schur norm [50]. It was

6 A time-dependent trace tr(H) = Nu(tr) € C can be removed from the Hamiltonian H by the transformation
st /

) — ¢ Jon@har |). Since this transformation involves only a multiplication by a complex function the motion in

the PHS is not affected by this transformation (5). Setups with non-vanishing complex traces have been considered,

e.g., in [38].
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possible to use the trace in the last inequality since H ' is a positive operator. Equations (6)
and (9) set a bound on the evolution speed:

dSFS

— | = VE < IHs. (10)
Upon writing the HS norm explicitly in terms of matrix elements
IHlEs = Y I1Hyl% (11)
]

it becomes clear that the evolution speed is limited by the size of the Hamiltonian elements
and not just by the eigenvalues difference. This becomes very important in the vicinity of NH
degeneracies as shown in appendix C.

3.2. The spectral norm upper bound—a tighter bound on the evolution speed

To get a tighter bound on the evolution speed we use the following inequality:
N
K < (WIHHIW) = 0l (Wik)* < max () = [[H][3, (12)
k=1

where A; > 0 and |k) are the eigenvalues and eigenstates of the matrix H'H, H H|k) = A |k).
[|H||sp = ~/max(A;) is known as the spectral norm of H (also known as Ky Fan 1-norm [50]).
To understand the second inequality in (12), notice that the states {|k)} constitute a complete
orthonormal basis set and (W|W) = 1, so that the projection sum satisfies ), [(Wk))> = 1.
Thus, Zﬁ:’:l Al (Wk)|? is just a weighted average of positive numbers ;. Such a weighted
average is always smaller or equal to the largest element.

Obviously, the Hilbert—Schmidt norm ||H]| |%S and the spectral norm ||H| Iép can be
represented in terms of the eigenvalues A, . This implies the following useful relation:

1H115p < 1HI[fs < rank(H)||H|[5p - (13)
Therefore, the spectral norm bound on the evolution speed

dSFS

dr

is always tighter than the Hilbert—Schmidt norm bound. Simple and useful lower and upper
bounds on ||H||gp for H(t) € CY*N (but not on the evolution speed!) are given by:

max(|H;1) < [Hlise < N max(/H ;). 15)

The values «/A; are known as the singular values and they play an essential role in singular
value decompositions [51]. The spectral norm, then, is the largest singular value of . Finally,
we briefly comment on two extremal cases of traceless 2 x 2 matrix Hamiltonians.

= VK < |[H|sp (14)

e For a NH two-level Hamiltonian H which is similar to a Jordan block with zero-eigenvalue

H~ J(0) = ( 8 (]) ) it holds rank () = 1 so that

H ~ J»(0) == IHlisp = [H|lns- (16)

This fact will be important later on in section 5.
e For a Hermitian traceless two-level Hamiltonian with energy separation AE, the spectral
norm is ||H||sp = |AE| /2 and we obtain:

dSFs

< |AE|/2. a7
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As discussed in appendix A the Bloch unit vector, 7, is related to the Kinetic scalar via:

L(:T’;‘ = 2+/K. Therefore the corresponding upper bound on the evolution speed over the
loch sphere in the Hermitian case is:

dn

dr dr

which is known as Fleming bound [33]. That is, for a two-level Hermitian operator the

spectral bound coincides with the known Hermitian bound.

dSFS

< |AE| (18)

For explicit examples of the speed bound we refer the reader to appendices B and C. In
appendix B, a Hamiltonian that describes certain optical systems is analyzed. Appendix C
studies a P7 -symmetric Hamiltonian that was introduced in [29], in the context of the P7 -
symmetric brachistochrone problem. In the next section we introduce the notion of speed
efficiency which quantifies how close the actual motion in P(5)) is to the speed bound just
derived. Later we show how to construct a Hamiltonian which reaches the spectral bound for
a given motion in P(£)) at all times.

4. Speed efficiency of quantum evolution

In this section we introduce the notion of a maximally efficient evolution. We wish to compare
the actual speed of motion in the PHS P($)) to the speed bound given by the spectral norm
|IH|Isp characterizing the available resources of the system. We use | H ||sp since it is tighter
than the Hilbert—-Schmidt norm |#|ys. Let [) € CV be a time-dependent state in an
N-level system that induces some predefined evolution 7 (|y)) in the corresponding PHS
P($) = CPV~! 5 w(]y)). We define the efficiency to be:

n ) = 2 (19)
IHlIsp

It is important to realize that this efficiency is an instantaneous (or local) property of H and
its solution |yr). The shape of the curve in P($)) alone has nothing to do with efficiency.
For example, a geodesic in P($)) can have efficiency smaller than 1, and on the other hand,
non-geodesic curves can have 100% efficiency.

Loosely speaking, the value of  quantifies to what extent the Hamiltonian really uses all its
resources to generate motion in IP(£)). That is why we call an (n = 1)-evolution, a ‘maximally
efficient evolution’. As an example of inefficient evolution, consider a spin in a magnetic field
which is not exactly perpendicular to the spin direction. The part of the magnetic field which
is parallel to the spin is wasted as it does not contribute to the precession motion. As we
shall demonstrate in the next section, this inefficiency can be fixed by making the Hamiltonian
time-dependent (rotating the magnetic field in time). In the NH case, reaching 100% efficiency
becomes even more difficult. As explained at the end of section 2, for NH systems the condition
%H = 0 does not guarantee a constant evolution speed, i.e. | d‘fTFS| # const. On the other hand,
the spectral norm is fixed if %H = 0. Equation (19), then, implies that n varies with time and,
therefore, the evolution cannot be maximally efficient at all times.

In the next subsection we show how to construct Hamiltonians that are designed to
generate maximally efficient evolution for a given predefined motion in PHS at all times. We
will demonstrate that such an (n = 1)-evolution can be either Hermitian or NH.

4.1. Maximally efficient evolution

Our goal in this section is to find a Hamiltonian 7/ that generates the same motion 7 (|v/))
in P($) as |y¢) but with 100% efficiency. The solution |m) corresponding to the maximally

6
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efficient Hamiltonian Hy may differ from [v) only by a time dependent complex factor. In
short, we look for |m) and H)y that satisfy:

w(lm)) = (|¥)) (20)
id/m) = Ho|m) 2n
() = 1. 22)

The first requirement is that the states |m) and |1) have the same motion in P($)). The second
requirement states that {Hy, |m)} satisfy the TDSE, whereas the third requirement simply
means that we are searching for maximal efficiency. To satisfy the first requirement we set:

Im) = c()|¥) (23)

where c(¢) is a complex differentiable function of time (see equation (5)). For reasons that will
become clear shortly, we fix c(t) by choosing |m) to be normalized to unity and to be parallel
transported”:

(m|m) =1, (24)

(m|d;|m) = (3;(m|)|m) = 0. (25)

The first condition determines |c(¢)|, and the second one yields the phase of c(¢) (up to a
time-independent constant). To find the Hamiltonian that drives |m) with maximal efficiency
we choose the following ansatz:

Ho = i|8ym) (m| — ig|m) (d;m|, (26)

where, in general, g can be time-dependent. For g = 1 the Hamiltonian is Hermitian. Notice
that |0,m) = 9, |m) is not normalized and not parallel transported. Moreover, in contrast to
|m), |d,m) is not a solution of the TDSE (with H, as Hamiltonian). However, |m) and |d,m) are
mutually orthogonal by virtue of the parallel transport we imposed. By applying (26) to the
state |m) we see that the requirement (21) is immediately satisfied. To fulfil the remaining third
requirement we note that in the basis {|m) , |0,m)} the Hamiltonian H, has only off-diagonal
elements so that H) is traceless by construction. To calculate the efficiency we first calculate
the spectral bound and then the kinetic scalar. Evaluating H(T)Ho we get

HiHo = (3m|dm)|m) (m| + |gI*|d,m)(d,m]. 27)

The eigenstates of HSHO are |m) and |0,m) and the corresponding eigenvalues are (d,m|d;m)
and |g|* (8,m|d,m), respectively. The spectral norm is given by:

Hollsp = +/ (8,m|9;m) max(1, [g]). (28)
Using the fact that (n |Hy| n) = 0 and equations (6) and (27) we get that:

K(Ho, Im)) = (9,m|d,m). (29)
The efficiency, then, is given by:

VK (Ho, m)) 1

n= = . (30)
Hollsp max (1, [g])
Clearly, maximal efficiency = 1 (third requirement (22)) is achieved provided that:
gl < 1. (31)
7 If |x) is a normalized state, (x|x) = 1, then its parallel transported form is given by [x) = e~ Jo{x1d x)at Ix).

|x) satisfies (x |9, x) = (3» x|x) = 0. This fixes the phase of the state up to a constant determined by the choice of
the lower limit of the time integral.
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In summary, given any arbitrary state |1), equations (23)—(26) together with (31) show
how to construct maximal efficiency Hamiltonians that generate the same motion in PHS P($))

as |y).

It is instructive to look on the instantaneous eigenvalues of H3. From
Hi = gldm) (3m| + g{d,m|d;m)|m) (m| (32)
and tr(Hy) = 0 it follows that the instantaneous eigenvalues E (¢) of H, are:

E, (1) = £./g/ (0:m|dm). (33)
In case of g € R, these eigenvalues are real for g > 0 and purely imaginary for g < 0, i.e.
E.(t) € RUIiR. This indicates a hidden instantaneous pseudo-Hermiticity of Hy, which is
related and analogous to the considerations® in appendix C. One of the key points of this
work is that the evolution can be maximally efficient regardless of whether the Hamiltonian is
Hermitian or not.

Finally, we note that the Hamiltonian H, in (26) shows some structural analogy to the
brachistochrone Hamiltonians for Hermitian systems (constructed in [36]). In fact, H, extends
the geodesic-trajectory paradigm of [35, 36, 45] to maximally efficient evolution regimes
over arbitrarily predefined time-dependent trajectories in P($)). Moreover, the constraint
AE = const is replaced by the constraint n = 1.

4.2. Inherent properties of the maximally efficient evolution

Here we wish to highlight three points which are generic for maximally efficient evolutions. The
first point concerns the fact that |m) is normalized and parallel transported. In the construction
of Hoy we demanded (m(t)|m(¢)) = 1 and (m|9,m) = 0. Now we wish to show that if these
constraints are relaxed the spectral norm will increase even though the motion in IP($)) remains
unaltered. According to (19) the efficiency will drop below 100% by this modification. Assume
we wish to change the amplitude and phase of |m) by some complex factor e ) where ¢(t)
is some complex number. This is accomplished by adding H a diagonal term so that:

Hoew = Ho + [m) (m|d,9(¢). (34)

To keep the trace zero, another diagonal term must be added as well, in principle, but it is of
no importance to the present discussion. This transformation does not change the value of K.

The spectral norm squared is the largest expectation of H, .., Hnew, S0:

[HnewlI5p = (mIH o Huewlm) = 18,0(0)* + (dm|d;m) > (3,m|d;m). (35)
Since K remained the same and the spectral norm increased, we see that the efficiency is now:
Mhew = mloym) (Gym[dim) <1 (36)

Hoewllse /10,0 (0)2 + (3,m]|3m)

This decrease in efficiency with respect to Hy expresses the simple fact that changes in phase
and/or amplitude also require spectral norm resources from the Hamiltonian. In order to direct
all resources to motion in P($)), any phase and amplitude changes should be avoided.

The second point concerns the role of g. While the H, found earlier conserves the norm of
|m), it does not do so for other initial states (with the exception of the Hermitian case g = 1).
Moreover, while |m) evolves exactly in the same way for all values of g, the evolution of
other states strongly depends on the value of g. This is demonstrated in the example shown in
figure 1. The state of interest in this example was chosen to be: |m) = cos(¢) |1) + sin(¢) |{).
We considered two different maximally efficient Hamiltonians. The first one is Hermitian

8 We leave a corresponding detailed investigation to future research.
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Figure 1. The value of g has no effect on the evolution when applied to the initial state H
was designed to propagate efficiently (north pole of the Bloch sphere in this example). Yet when
applying H, to a different initial state (south pole) the value of g may completely change the
evolution. The large black dots mark the starting points of the evolution. See text for details.

(g = 1) and the other is not (g = —0.8). The Hamiltonian is constructed using the recipe
in section 4.1. If the initial state is [ (r =0)) = |m(t =0) = |1) we observe that, as
expected, both Hamiltonians generate the same evolution. Yet, if | (t =0)) = |]), the
different Hamiltonians generate different evolutions and the effect of g becomes apparent.

The third point that we note is that for periodic motion in P(£)) the state |m) accumulates
only an Anandan—-Aharonov phase [52], since the dynamical phase (m|H|m) is zero for
maximally efficient evolution. Once again, this is the result of wasting no resources on phase
accumulation.

5. EP driven evolution

A special case of great interest is g = 0. Equation (32) shows that in this case H(z) = 0. This
can only happen if Hy is similar to a rank-1 Jordan block with zeros on the diagonal, i.e. when
Ho ~ J»(0). That is, Hy(g = 0) describes an EP operator—a NH degeneracy. The dynamics
can be fast even though at each instant the instantaneous eigenvalue difference is zero. This
degeneracy is time-dependent. Moreover, the orientation of the single geometric eigenvector
of a Hamiltonian Hy ~ J,(0) associates a preferred directionality to this degeneracy. The
directionality of the EP at each instant of time is chosen such that it induces the desired
dynamics. Thus it appears natural to name this evolution an exceptional point driven evolution
(EP-DE). Another unique feature of this evolution can be seen by evaluating the Hilbert—
Schmidt norm. For a general value of g the HS norm is:

IHollfis = (1 + |gl*)(3,m|d,m). (37)

Obviously, the HS norm takes its minimal value for EP-DE (g = 0), i.e. from all the possible
maximally efficient evolutions the EP-DE has the minimal HS norm. At this point the HS
norm || Hy || and the spectral norm || ’Hy||sp coincide, a fact mentioned in (16). Equation (11)
shows that the EP-DE provides the minimal value of ), j |Hl- i | *fora given trajectory in P($)).

9
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Conclusion

The concept of speed efficiency was defined using spectral speed bounds derived for NH
or Hermitian systems. A recipe for the construction of 100% efficiency Hamiltonians for
any evolution in the projective Hilbert space was given. These Hamiltonians contain a free
parameter, ‘g’. 100% efficiency is obtained for |g| < 1. The Hermitian case corresponds to
g = 1. We conclude that it is possible to have a Hamiltonian which is both 100% efficient
and Hermitian. The g = 0 case corresponds to a Hamiltonian which is not diagonalizable,
i.e. the evolution is driven solely by a time-dependent NH degeneracy (exceptional point).
This particular evolution minimizes the quantity Zi,j IH;;|*> with respect to all other 100%
efficiency evolutions considered in this work.

Appendix A. The Bloch sphere and the Fubini-Study metric

The dynamics of NH 2 x 2 matrix systems in ) = C? 5 |¢/) is conveniently analyzed as
dynamics on the Bloch sphere. The latter is spanned by the unit vectors

Alt) = Wiolv) _ (V|G |W) € 82 c R>. (A.1)
(Vly)
Its close relationship to the PHS CP! = P($)) = C2/C, ~ S? can be seen by the explicit
comparison of the Bloch sphere metric with the Fubini-Study metric of CP'. For a qubit
|W) e C? parametrized as |W¥) = (005(9/2), el? sin(@/Z))T, 0 € [0, 7], ¢ € [0, 2m] it holds
i = (sin(@) cos(¢), sin(f) sin(¢), cos(6))” and the Bloch sphere metric reads

dn® = do? + sin®(0)d¢>. (A.2)
For the same state |¥) the Fubini—Study metric (6) reduces to

1
dsgg = Z(d(?z + sin®(6)d¢?) (A.3)
and therefore:

dn 2 o dS]:s 2 o
(E) _4 (7> _ 4K (). (A4)

This is closely related to the fact that orthogonal states are antipodal on the Bloch sphere
having a geodesic distance r, whereas the corresponding Fubini—Study distance as discussed
in section 2 is sps = © = /2.

The main results of this paper can be expressed using the Bloch sphere and the NH Bloch
equations (see for example [5]) formalism, but we found that the results are more neatly
described by the ‘ket-bra’ operator formalism and the Schrédinger equation. Moreover, unlike
the NH Bloch equation formalism the ‘ket-bra’ formalism is applicable to a multilevel system
without any alterations.

Appendix B. Speed bounds in optical systems

Let us examine the NH evolution in optical systems where the Hamiltonians are explicitly
known and a two-level description is either a good approximation or even exact. Consider the
Hamiltonian H, introduced and studied in [31] in the context of ‘EP cycling’ [3, 5, 16, 32]:

0 i
where z, the propagation coordinate, plays the role of time. This Hamiltonian can describe
different physical systems. In [16], it was used to describe the evolution of the transverse
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electric field and its spatial derivative in a waveguide. In this system ¢(z) is proportional
to the change in the index of refraction with respect to vacuum. In [5] H(z) describes the
evolution of the two optical polarizations in crystals. g(z) in this case is related to the change
in the transverse part of the reciprocal dielectric tensor. The eigenvalue difference of H(z) is
AE = 2/q(z), and at ¢ = 0 a NH degeneracy (an EP) forms which is experimentally well
accessible in these systems.

From the structure of Hy(z) in (B.1), it is obvious that for g = 0 and AE(¢ = 0) =0
the evolution speed does not vanish for all states. Using (A.4) and the kinetic scalar definition
(6), one finds that the non-vanishing angular velocity is |§ |:|é| = 2]q(z)| for the spin-up
state |1) = (1,0)7, and |é| = 2 for the spin-down state |¢’) = (0, 1)7. In particular, at the
degeneracy ¢ = 0 the spin-up state becomes an eigenstate (¢ = 0), whereas the spin-down
state still has a speed 6 = 2 regardless of AE = 0. For ¢ # 0 the evolution speed of a general
state (not necessarily spin-up or spin-down) can be shown to be limited by

6] < 2 max(1, |g(2)]) < 2v/1+qP. (B.2)
where the last inequality simply follows from max(|a|, |b]) < v/ la|? 4 |b|*. From the norms
of the Hamiltonian (B.1),||H|lsp = max([i|, |—iq(z)]) , |Hllus =+/1+ Ig]*, we see that

0] <211 HIsp < 2 | Hlns- (B.3)

Hence, the maximal speed exactly fits within the spectral norm bound of H(z). Other optical
systems whose evolution speeds near EPs can easily be studied are discussed, e.g., in [15].

Appendix C. Spectral speed bounds for pseudo-Hermitian and P77 -symmetric
two-level Hamiltonians

We start from a general type NH traceless Hamiltonian, H, written in terms of the Pauli
matrices ’:

H() =[d@) +if©]-6 . (C.1)

where &, B € R? are some time-dependent real vectors. The eigenvalues are:

Er = 4,/ (@ +ip)? =i\/&’2—;§2+i2&-;§, (C.2)

and become real or pairwise complex conjugate for

@ =0 — E. € RUIR. (C.3)

Operators and matrices with this specific spectral behavior are known to be symmetric under an

anti-unitary transformation [53], to be pseudo-Hermitian [54] and self-adjoint in a Pontryagin
space [55] (a finite-dimension type version of a Krein space [56]).

For Hamiltonians H with & - 8 = 0 the SP norm and the eigenvalue difference reduce to

IHllsp = |&| + 18], AE =2,/@* — p2. (C4)

Obviously it is possible to have an arbitrary large || H||sp and a vanishing energy difference by
choosing |&| — |E|. This choice corresponds to an EP limit for which |AE|/ ||H|lsp — O,
since the eigenvalues are very small near the degeneracy while || ||sp remains roughly constant
and finite.

A simple example for a NH Hamiltonian with a similar type of behavior is the Hamiltonian
‘H used in studies of the P7 -symmetric quantum brachistochrone problem [29]

_ (irsiny s _ L
H= ( s —irsinx) = soy +irsin x oy, rs, x €R. (C.5)
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This complex symmetric Hamiltonian is P7 -symmetric, [P7,H] = 0 and P-pseudo-
Hermitian, PH = H P, with the parity operation given as P = o, and the time reversal, 7 , as
complex conjugation. In [29], it was shown that for certain parameter combinations r, s, x such
Hamiltonians with fixed and purely real eigenvalues difference AE € R can evolve a given
initial state |¥;) € C? into an orthogonal final state |¥r) € C?, (¥;|Wy) = 0, in an arbitrarily
short time interval. Due to the finite geodesic distance 7 between these antipodal states |\W;)
and |Wr) on the Bloch sphere, the corresponding evolution speed should diverge in this limit.
The concrete relations can be easily obtained in terms of the simplifying reparametrization
rsin x = ssina, which yields

H=s (l ne _islina) . AE=2scosa, |[Hllsp = IsI(1 +|sinal). (C.6)
As demonstrated in [39], the ultra-fast evolution regime predicted in [29] corresponds to an
EP-limit « — £ /2 so that for fixed AE = const it holds s = AE/(2cosa) — oo and

i
R (1 —i> . Mg ~2si >0, |AE|/|H]gp~cosa — 0. (CT)

According to (A.4), this would indeed allow for diverging evolution speeds on the Bloch
sphere

dn

dr

From this diverging spectral norm one might be led to the conclusion that actually such ultra-
high evolution speeds and corresponding ultra-short evolution times might be forbidden by
the limited resources of the system and the validity region of the model used. Both would set
some natural upper bounds (ultra-violet cut-offs) on the evolution speed. This would be true
if one were keeping within the present NH setups. Nevertheless, the same ultra-high-speed
evolution regimes can be induced in subsystems of entangled Hermitian systems in larger
Hilbert spaces [43]. Due to geometric contraction effects the corresponding evolution speed
of the associated (Naimark-dilated) Hermitian system in the larger Hilbert space will remain
finite, well-behaved and much below any ultra-violet cutoffs.

For completeness we note that the present evolution speed considerations are closely
related to questions for possible lower bounds on evolution times (quantum brachistochrone
problems) and possible violations of such bounds. Corresponding intensive theoretical studies
for Hermitian setups [35—-37] in the early 2000s have been followed by investigations of various
aspects of NH systems (P7 -symmetric [29, 30, 39-43] and quasi-Hermitian ones [44], as well
as other of more general NH types [38]).

‘PT -symmetric setups [57-59] have been experimentally studied via special arrangements
of gain—loss components (active P7 -symmetry) and components of different loss (passive
PT -symmetry) in optical waveguide systems [9, 11], microwave billiards [18], electronic
LRC-circuits [19, 20] and in mechanical systems of coupled pendulums [22].

= 2VK < 2| H|lsp — 0. (C.8)
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