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Gravitational excitons from extra dimensions
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Inhomogeneous multidimensional cosmological models with a higher-dimensional space-time mednifold
=MXII[_;M; (n=1) are investigated under dimensional reductio®tpdimensional effective models. In
the Einstein conformal frame, small excitations of the scale factors of the internal spaces near minima of an
effective potential can be observed as massive scalar fields in the external space-time. Parameters of models
that ensure minima of the effective potentials are obtained for particular cases and masses of gravitational
excitons are estimatefiS0556-282(97)03622-9

PACS numbegs): 04.50+h, 98.80.Hw

[. INTRODUCTION of isometries related to face pairings and to the manifold’'s
topology. For example, three-dimensional spaces of constant
The large-scale dynamics of the observable part of ounegative curvature are isometric to the open, simply con-
present time Universe is well described by the Friedmanmected, infinite hyperboli¢Lobachevsky spaceH? [9,10).
model with the four-dimensional Friedmann-Robertson-However, there exist also an infinite number of compact,
Walker (FRW) metric. However, it is possible that space- multiply connected, hyperbolic coset manifold$/I", which
time at shortPlanck distances might have a dimensionality can be used for the construction of FRW metrics with nega-
of more than 4 and possess a rather complex topolégly tive curvaturd 12,14). These manifolds are built from a fun-
String theory[2] and its recent generalizations p-brane, damental polyhedrofFP) in H3 with faces pairwise identi-
M-, andF-theory[3,4] — widely use this concept and give fied. The FP determines a tessellationttt into cells that
it a new foundation. The most consistent formulations ofare replicas of the FP, through the action of the discrete
these theories are possible in space-times with critical dimergroupT" of isometrieg 14]. The simplest example of Ricci-
sions D.>4; for example, in string theory there af®. flat compact spaces is given b-dimensional tori TP
=26 or 10 for the bosonic and supersymmetric version, re=RP/T". Thus internal spaces may have nontrivial global
spectively. Usually it is supposed that @-dimensional topology, being compadi.e., closed and boundgdor any
manifold M undergoes a “spontaneous compactification” sign of spatial curvature.
[5-8] M—M*xBP~%, where M* is the four-dimensional In the cosmological context, internal spaces can be called
external space-time an8®~“ is a compact internal space. compactified when they are obtained by a compactification
So it is natural to consider cosmological consequences dfL7] or factorization(“wrapping” ) in the usual mathematical
such compactifications. With this in mind, we shall investi- understandinge.g. by replacements of the tygt®—SP,
gate multidimensional cosmological moddlgICMs) with RP—RP/T", or HP—HP/T") with additional contraction of
the topology the sizes to Planck scale. The physical constants that appear
in the effective four-dimensional theory after dimensional
M=MgXMX:-- XMy, (1.)  reduction of an originally higher-dimensional model are the
result of integration over the extra dimensions. If the vol-
whereM, denotes thé,-dimensionalusuallyD,=4) ex-  umes of the internal spaces would change, so would the ob-
ternal space-time an; (i=1,...n) areD;-dimensional served constants. Because of limitation on the variability of
internal spaces. To make the internal dimensions unobserthese constantfl8,19 the internal spaces are static or at
able at the present time these internal spaces have to be cotsast slowly variable since the time of primordial nucleosyn-
pact and reduced to scales near the Planck lengih thesis and, as we mentioned above, their sizes are of the
~1073% cm, i.e., scale factors, of the internal spaces order of the Planck length. Obviously, such compactifica-
should be of ordeLp,. In this case we cannot move in extra tions have to be stable against small fluctuations of the sizes
dimensions and our space-time is apparently four dimenfthe scale factors;) of the internal spaces. This means that
sional. There is no problem in constructing compact spacethe effective potential of the model obtained under dimen-
with a positive curvaturg¢9,10]. (For example, every Ein- sional reduction to a four-dimensional effective theory
stein manifold with constant positive curvature is necessarilyshould have minima a;~Lp (i=1,... n). Because of its
compaci11].) However, Ricci-flat spaces and negative cur-crucial role, the problem of stable compactification of extra
vature spaces also can be compact. This can be achieved dynensions was studied intensively in a large number of pa-
appropriate periodicity conditions for the coordinafé8]—  pers,[20—34. As result certain conditions were obtained that
[16] or, equivalently, through the action of discrete grolips ensure the stability of these compactifications. However, the
position of a system at a minimum of an effective potential
does not necessarily mean that extra dimensions are unob-
*Electronic address: guenther@pool.hrz.htw-zittau.de servable. As we shall show below, small excitations of a
Electronic address: zhuk@paco.odessa.ua system near a minimum can be observed as massive scalar
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fields in the external space-time. In solid-state physics, exci- 1

tations of electron subsystems in crystals are called excitons. S= _2j d®x|g[{R[g]—2A} + Saqq+ Syeu- (2.5
In our case the internal spaces are an analog of the electronic

subsystem and their excitations can be called gravitation
excitons. If masses of these excitations are much less than
the Planck mas#p~10° g, they should be observable,
thus confirming the existence of extra dimensions. In the Saddz—f d®xglp(x) (2.6
opposite case of very heavy excitons with masgsesMp, it M

is impossible to excite them at present time and extra dimens not specified and left in its general form, taking into ac-
sions are unobservable in this way. ~ count the Casimir effeci20], the Freund-Rubin monopole
The paper is organized as follows. In Sec. Il we describexnsatz6], a perfect fluid[41,42, or other hypothetical po-

our model and obtain an effective theory in Brans-Dicke andentials[34,36. In all these cases depends on the external
Einstein conformal frames. In Sec. lll it is shown that small .o qinates through the scale factorg(x)=ef®

excitations of the scale factors of the internal spaces ne F=1, . . n) of the internal spaces. We did not include into

minima of an effective potential in the Einstein frame have athe act|on(2 5) a minimally coupled scalar field with poten-
form of massive scalar fields in the external space-time. Th(ﬁ | U(4) because in this case there exist no solutions with

rr|1asses c;f Sf;mht. scala: f'?lolls a_rte] ev_al_uate_d f[%r partlcul tatic internal spaces for scalar fielgsdepending on the
classes of effective potentials with minima in the case of, 0 nal coordinategsa].

one-internal-space mode{Sec. 1\) and two-internal-space ; ;

- After dimensional reduction the action reads
models(Sec. V. In Sec. VI we show that conditions for the
existence of stable configurations may be quite different for

athe additional potential term

1
these two types of models. S= 22 dDOX\/ H ePif
Ko
Il. MODEL
O—G..gOnr j
We consider a cosmological model with the metric X’ RIg™]=Gijg™""d,.89.8
n . n )
g=9'%+ > e g, (2.3) +> RgMe 2P —2A—242%p}, (2.7
i=1 =1
which is defined on manifold1.1) wherex are some coor- where k5= «?/u is the Dy-dimensional gravitational con-
dinates of theD ,-dimensional manifoldV and stant, M:H{‘:l,ui=H{‘:1fM_dDiy\/|g('5|, and G;j;=D;§j;
—-DiD; (i,j= ..n) is the midisuperspace metric
(0 — 5@ " v
9 9,y (X)dX" @ dx". (2.2 [43, 44] Here the scale factor8' of the internal spaces play

the role of scalar fields. Comparing this action with the tree-
level effective action for a bosonic string it can be easily
seen that the volume of the internal spaces?®

Let manifoldsM; be D;-dimensional Einstein spaces with
the metricg®”, i.e.,

R gP1=Ngl), mn=1,...D (2.3 =I,e e plays the role of the dilaton fiel87,44,43. We
note that sometimes all scalar fields associated itlare
and called dilatons. Action(2.7) is written in the Brans-Dicke
. . frame. Conformal transformation to the Einstein frame
Rlg"]=\'D;=R;. (2.4)
2[(Dg—2)
In the case of constant curvature spaces paramatesse gl =e 4*(Po=2) (O)—(H eD'B) gl) (2.8
normalized as\'=k;(D;—1) with k;==+1,0. We note that
each of the sprecd\ﬂ can be split |nt0 a product of Einstein yields
spacesM;—1I, M [37]. HereM are Einstein spaces of
d|menS|onsDk W|th the metric g!!) [g0]=\Lg! 1 j T — P
(k) Rl 9k K (k)mn S=—_| dPox+/|gONHRIGDT-G gDxry gig Bl
(mn=1,... P} andR[g{)}]= )\ D¥. Such a splitting pro- 2k My 97 HRIG™ =Gy WP 0B
cedure is WeII deflned prowde\zl are not Ricci flaf37,38.
If M; is a split space, then for curvature and dimension we —2Ueft}- 2.9
have, respectively[37], R[g®]==" R[g{}] and D;  The tensor components of the midsuperspace mésiget
—E”‘ Dk Later on we shall not specify the structure of the space metric orR7) Gj;(i,j= . n), its inverse metric

spacesM We require onlyM; to be compact spaces with G| and the effective potentlal are, respectively,
arbitrary sign of curvature.

With the total dimension D=3 ,D;, «?> a

D-dimensional gravitational constanf, a D-dimensional Gij=Did; D0—2D'DJ’ (2.10
cosmological constant, andygy the standard York- .
Gibbons-Hawking boundary terrf89,40, we consider an G_”=5—]+ 1 2.0

action of the form
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and

n '\ — 2(Dg-2) n .
Ueﬁ=(£[l eDiﬁl) {——izl Rie_zﬁl-}—A-l-sz}

(2.12

We recall thatp depends on the scale factors of the internal

spacesp=p(B%, ... ,B"). Thus we are led to the action of a

self-gravitatingo-model with flat target spac&if ,G) (2.10
and self-interaction described by the poten(iall?).

Let us first consider the case of one internal spaeel .
Redefining the dilaton field as

. /PiD—2)
N2

we get, for the action and effective potential, respectively,

® (2.13

5= 52| PoEIURET 15,00, 200
(2.19
and
Dl 1/2
“e“:exf’[z@(m> }
x| = %Rlexéz“’(%) YA sz(<p)} :
(2.15

where in expressiof2.15 we use for definiteness the minus
sign in Eqg.(2.13.

Returning to the general case- 1, we transform the mid-
superspace metritarget space metnid2.10 by a regular
coordinate transformation

¢=QB, B=Q ¢ (2.1
to a pure Euclidean form
e n
Gjdpi@dpi=0;de'®de=2, del®de',
i=1
G=Q'Q, o=diag+1+1,...,+1). (2.17

(The prime denotes the transpositiopAn appropriate trans-
formationQ: 8'— ¢! =Q!g' is given, e.g., by[43]

n
‘Pl:‘AZl Dig,

¢'=[Di-1/3 %] D(B-BY), i=2,...n,
j=i
(2.18
whereX;=3{_,D;,

1/2

: (2.19

1 D-2
D’ Do—2

A=

=+
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andD’:=3_,D;. So we can write action2.9) as
= | d°xV|gOHRIG V]~ g O
2K0 Mo
Xd,¢'3,¢" = 2U g1} (2.20

with the effective potential

U eff— eX%
n

1 e
- 52 Rie 20 Ve A+ 12p . (2.20)
i=1

2 ) L
A(Dy—2)] ¢

X

I1l. GRAVITATIONAL EXCITONS
Let us suppose that the effective potentiall2 has

minima at pointsB.= (B2, ....8Y,
oU
ot =0, c=1,...m, (3.1)
FY:
B
and that its Hessian
3?U of¢
Aok .= ——— 3.2
(c)ik (?IBI(?IBk (

B

does not identically vanish at these points. For small fluctua-
tions 7': = B'— B, we have then, up to second order in the
Taylor expansion,

n

Uer=Uex( 5 +EZ w7 ¥ 3.3
eff efi( Be) 2ikzla(c)|k7]77- (3.3

As a sufficient condition for the existence of minima/t
we choose in this paper the strong condition consisting in the
positivity of the quadratic form

n

n’Aanigl a(c)ik’/]i 77k>0, V7]1, P ,7]“, (34)

with exception of the poingy*= 7?=---=2"=0. It is clear
that for higher-order expansions of the effective potential
inequality (3.4) can be weaken to a non-negativity condition
7' A.7=0 with additional requirements on the multilinear
forms occurring in this case. We note that, according to the
Sylvester criterion, positivity of quadratic forms is ensured
by the positivity of the principal minors of the corresponding
matrix, in our case of the matri&, :
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Q)11 Q(c)12

a(c)ll>0, >0, LRI

Q)21 Q(c)22

Q(o)11 A(c)1n

A(c)21 A(c)2n

. o —detn.>0. (3.5

a(c)nl a(c)nn

Equation(3.1) and Hessiar3.2) are affected by the mid-
superspace coordinate transformat{@ril6 as follows:

M| Vel
&QDi o z?ﬂk B(Q i=0, ¢.=QB:, (3.6
Cc
32U o ¢l PUe| do'
A i, =————| 3 = —— : —EQ]a -Ql_
(3.7

This means that matrices, andA_C are congruent matrices

[46] AC=Q’A_CQ and hence their rank and signature coin-

cide.
Taking into account that transformati¢é®.16 holds also
for small fluctuations near the minima,

£=Qn, 7=Q7 1

we conclude that the quadratic forf8.4) is invariant under
this transformation

=9 o, (3.9

7'An=(Q 1) Q' AQQ ) =¢AkL (3.9

Together with the coinciding rank and signature of the con- +

gruent matriced\. andA., this implies that the positivity of
the quadratic form(3.4) remains preserved and minima of
U in the B representation correspond to minimaldfy in
the ¢ representation.

To get masses of excitations we need to diagonalize thWhere A )efs:=

matricesA_C, keeping at the same time the kinetic term
gOrsi o', ¢, in its diagonal form. One immediately
checks that appropriate S@)( rotationsS,: S.=S. ! sat-
isfy these requirements

N 2 2_ 4; 2 2 2
Ac=SMcS.,  Mg=diagdmi;); M)z, - - - Mig)n)

(3.10

and

n n
é(o)ﬂvi:zl (’Di,,lL(Pi,V:é(O)Mvizl ¢I,M¢Iv”’ (3.11)

where ¢=S;¢. Introducing the corresponding transformed
fluctuation fieldsyy=S:¢, we also verify that

7' A= E Ack= ' M2y (3.12

It is clear from the Sylvester criterion that all diagonal ele-
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(2.17, (3.7), and(3.10 it follows that they are eigenvalues
of matrix A, as well as matrixG A, .

So explicit calculations of the matrices, and Mg go
along standard linep46] and give, e.g., in the case of two
internal spacesn=2),

S COSy, —Sina, 3
=| .. A
¢ \sina, cosa @13
with the angle of rotation
2a,
tan2a = —— 22 (3.19
A(c)22~ A(c)11
and
2 1 2

Mig)1,2=5[Tr(Be) = VTr*(Bc) —4detB.)], (3.19

where

B.=A. or B.=G !A.. (3.16

It can be easily seer!hamu&l,m(zc)2 are positive because

()11, 8()22>0 and agy118 (22> Brey1, - SO the action
functional(2.20 is equivalent to a family of action function-
als for small fluctuations of the scale factors of internal
spaces in the vicinity of the minima of the effective potential

1 = A A
S= —ZJM doxV|g @ {RIG VT 2A et}
0

2Ky

"1

2 zf AP0V Ig =g Oy iy,
- 0

c=1...m, (3.17
Ueﬁ(q?)c) and the factor/u/«? has been in-
cluded iny for conveniencey/u/ k2y— .

Thus conformal excitations of the metric of the internal
spaces behave as massive scalar fields developing on the
background of the external space-time. By analogy with ex-
citons in solid-state physics, where they are excitations of the
electronic subsystem of a crystal, the excitations of the inter-
nal spaces may be called gravitational excitons.

To conclude this section we want to make a few remarks
concerning the form of the effective potential. From the
physical viewpoint it is clear that the effective potential
should provide the following conditions:

(i) agi=ele=Lp,

(i)

(iii ) (3.18
Condition (i) expresses the fact that the internal spaces

should be unobservable at the present time and stable against
quantum gravitational fluctuations. This condition ensures

Mc)i<Mpy,

A(c)eff_’ 0

ments of the matri>d\/|§ should be positive. From relations the applicability of the classical gravitational equations near
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positions of minima of the effective potential. ConditiGn 2

means that the curvature of the effective potential should be a—p. a—{o >0, i=1,2 (3.23
less than a Planckian one. Of course, gravitational excitons ap' ; ap? Ao

can be excited at the present timerif<Mp,. Condition(iii)

reflects the fact that the cosmological constant at the preseand

time is very small: A<10 % cm 2~10 ?°Ap,, where

Ap|=L;,2. Thus, for simplicity, we can demand that. p

ﬁ 2P 2 3.2
=Ue(B)=0. (We used the abbreviation\ e:=A ger-) =1l “op - (329

82
N

. e ° ap ; IBrIB? | ;
Strictly speaking, in the multi-minimum case*1) we can Be B
demanda);~Lp and A ¢)e=0 only for one of the minima, Let Us sUDpose a structure of
namely, the minimum that corresponds to the state of the PP p
present Universe. For all other minima it may &g);>Lp, N n
and|A (¢)ef>0. p=2, Aaexp( > fak,Bk), (3.2

It can be easily seen that the conditiohgz=0 and p a=1 k=1

=0 are incompatible. In fact, the necessary extremum con-
dition for the potential2.21) reads whereA,,f%, are constants. This potential has very general

form and includes, for example, a Freund-Rubin monopole
ansatZ 6], crude approximations of the Casimir effect due to

B! aUeﬁ_ 2 r(Q- hi+ —+Q1 “lUg=0, nontrivial topology of the space-tinj20,36 and multicom-
det i ponent perfect fluidg41,42. In the former casémonopole
the potentialp reads[25]
_~ aueﬁ n . 0-'P . n n
B l—=> r(Q Y,+—=0, i=2,...n, i
Ig' 121 Q7 Ig' E (— E f;)2e 2Pk, (3.26

(3.19

i = here f, = const. So, for the matrix', we havef',=
where r;:=Riexd—2(Q Y\, B:=expy¢*, and w P ’ k , k
=2/A(DOI—2).I FO%Uefﬁmm:)B and p=0 tﬁé system hgsl 4 —2Did, i,k=1,...n.In the case of the multicomponent
nontrivial solution if and only if detQ~')=0. However, perfect fluid the energy density reael 42
transformation(2.16) is regular. Thus there are no solutions m m n
for Ugs|min=0 andp=0 unless all internal spaces are Ricci- — (@) — A exp( _ 2@, g«
flat. Moreover, as follows from potenti@2.12), the condi- p a§=:1 P 2 é k§=:1 K DB
tions U gl min=0 and dU /9B |min=0 are compatible if and
only if where A, are constants. This formula describes the
m-component perfect fluid with the equations of stﬁ’l,@
=(a®—1)p? in the internal spac#!; (i=1, ... n). In the

. (3.27

n

Z’l Rie™?Pe=2[ A+ k®p(Bc)] (320 external space each component corresponds to vaetfim
=0 (a=1,...m). For this examplg?,= — a{®D,.
and For potential(3.25 Eq. (3.21) can be rewritten as
i J —_ 2 a _
Re 2=, 2P| 21, . n @321 fk=7x agl haf®,  k=1,...n, (3.29
B -
Be
wherer, :=Rexp(—28) andh,: = A,expEh_,f3A5). Now
If all internal spaces are Ricci-flaR{=0,i=1, ... n) and the minimum condition$3.23 and(3 24, respectively, read
p=0, there are no extrema at all. N
. With Uegl =0, -aUeﬁ/a,B' |5,=0, and Eq(3.21), the Hes- S hafa(fa+2)>0, k=12 (3.29
sian (3.2 of potential(2.12 reads a=1
d
ap #p an
a.oik=Bx? 26 —_— , 3.2
(©)ik 'kz?,B aﬁ'&ﬁl‘é] (3.22 )

2 N
I1 > haf%f%
k=1 a=1

where B:=exg — 2/(Dy— 2)2 _,D;BL]. The effective po- (3.30

tential U g has.mlnlma aip if matrices 6_‘(0_)'" sat_|s_fy the For example, for the monopole potent{al26 we obtain the
Sylvester criterion(3.4). Because oB>0, it is sufficient t0  axtremum condition

check this criterion for the matrix elemeritg = Bflaij . For

example, in the two-internal-space case=(2) there will be Rkexp[Z(Dk—l)ﬁ'g]=2DkK2(fk)2, k=1,...n.
minima if (3.3)

N
( 21 h,f2 (fa+2) | >
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It follows from this expression that there exists an extremum As it was shown in Sec. lll, the effective cosmological
if sgnR,>0, k=1, ...n. Conditions (3.29 and (3.30 constant is not equal to zerodgf=0. To satisfy this condition
show that this extremum is a minimu¢for D, >1). we should consider the cage=0.

IV. ONE INTERNAL SPACE B. Casimir potential p=Ce™P#

Here we consider the case of one internal space or, strictly Because of a nontrivial topology of the space-time,
speaking, the case where all internal spaces have one cogcuum fluctuations of quantized fields result in a nonzero
mon scale factor. In the case under consideration the actiof€rgy density of the forrf20,23,26,47,48
and the effective potential are given by Ed2.14) and —CeDB 4.5
(2.19), respectively. To get masses of the gravitational exci- p ' '

tons it is necessary to specify the potengalFor this pur-  whereC is a constant and its value depends strongly on the

pose we consider four particular examples. topology of the model. For example, for fluctuations of sca-
lar fields the constan€ was calculated to take the values
A. Pure geometrical potential p=0 C=—8.047x10 8 if My=RXx S, M, =St (with e*” a scale
The necessary condition for the existence of an extremurfactor of S* and eﬁ°>e51) [23]; C=-1.097 if Mg
gives =RxR?, M;=S! [47]; and C=3.834x10°° if M,
. - =Rx S, M;=S° (with ef°>ef") [23]
Lle2Bc— — (4.1) From Egs.(3.20 and (3.21) (for n=1), i.e., conditions
D, D-2 U o198 |min=0 andA =0, we immediately derive
where B:= 2. It follows from this expression that sgn _2p._ 2D
=sgrR;. From the minimum condition Rie o= D_2A (4.6
2 _ and
allzﬁ Uert = 2(D—2) Ry (e 26e)(P-2/(Po-2)>
a3? 5 Do—2 R,eP~2Fc= ,2CD. (4.7
C
4.2

An extremum exists if sgR=sgm\ =sgrC. Expressions
Hé,l.G) and (4.7) provide fine-tuning for the parameters of the
model. Similar fine-tuning was obtained by different meth-
ods in paperg$26] (for one internal spageand[34] (for n
identical internal spacgsThe second derivative and mass
squared read, respectively,

we see that bare cosmological constant and curvature of t
internal space should be negativeR;<<0. The effective
cosmological constant is

Aeﬁ=D2°—|;2R1<e*2ﬂc><D*2>’<Do*2> 4.3
1 9?U
_ . ay=—s'| =(D—2)Ry(e 2e)P~2/P0-2, (48
and negative folR;<<0. The mass squared of the exciton d B.
reads
Do—2
4Ay 2Ry m?= Ry(e™2£e)(P=2/(Do=2), (4.9
2 _ et T 0-2B0)(D-2)/(Dg-2) D,
m D,—2 D, (" Fe) . (49

Thus the internal space should have positive curvaRire
If we assume, for example, that for a space-time configura>0 (or for split spaceM, the sum of the curvatures of the
tion MyXM, with four-dimensional external space-time constituent spaceM'I should be positive
(Do=4) and compact internal factor spaldg = HP/T" with Let us consider a manifoldM with topology M

constant negative curvatuR = —D(D;—1) there exists a =Rx 3% 3, wheree?’s>e?’. Then [23] C=3.834x<10°6
minimum of the effective potential @ =10"Lp,, then we  >(. As C,R,>0, the effective potential has a minimum
get n;2:§§D1_1)102(D1+2)M§,' and  Aer=—(D1  provided A>0. Normalizing «3 to unity, we getx?=u,
—1)10 ?®1*2Ap. Thus, according to observational data, .o =27 D2 ((d+1)) for the d-dimensional

with |A ¢<10"1%°Ap,, there should be at leaBt; =59 and h For th del und iderati ba
the corresponding excitons would be extremely light par—Sp ere. gr the model under consideration we obtain
~1.5x10 Lp andm~2.12x 10°Mp,. Hence conditionsi)

ticles with massesn=<10"%Mp~10" % g. If one uses a re- d(i iofied or th | h |
duction of the effective cosmological constant holding an (||)'are not satisfied for this topology. l_:or other topolo-
gies this problem needs a separate investigation.

=2R; andR; fixed whenD;— (this can be achieved by a
conformal transformationg®™—D2g™™) with fixed «3
= k?/ ), one getsa.— Lp and A 4—0. But at the same time
the exciton mass vanishesi{~0) and the effective potential The monopole ansa{f] consists in the proposal that an
degenerates into a step function with infinite heidhtz—c  antisymmetric tensor field of rank, is not equal to zero
for a<1 andU =0 for a=1. Thus, in the limitD;—o only for components corresponding to the internal spdge
there is no minimum at all. The energy density of this field reafi®4,25

C. Monopole potential p=f2e~2P18
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p=f2e 2D18 (4.10 52U
a; = :ff :(aDl_Z)Rl(efzﬁc)(ofz)/(DOfZ)_
where f is an arbitrary constantfree parameter of the B B.
mode). Equations(3.20, (3.21), and (3.3)) yield the zero (4.19

extremum conditions
Becausea,A>0, Eq. (4.17) shows that the internal space

A= D,-1 Rye 2fc (4.11) M should have a positive curvatuRy >0. From Eq.(4.19
2D, we see that there exists a minimumdit>2/D 4. The corre-
q sponding mass squared of the exciton is given as
an
— e~ 2Bc(D1-1) 41 D,(D-2) ! '
2c2 © ’ (4.12 1
2D k°f (4.20

which show thaRR;,A>0. The exciton mass squared reads For the critical value ofx at a=2/D; the model becomes

degeneraté) .4=0.
:2(D0—2)(D1—1) (e~ 2Bc)(D=2)/(Dg=2) As an illustration, letM, be a three-dimensional sphere
Di(D-2) ! ' and a,=10Lp;. This minimum can be achieved foh
(413 —(@7?) 1x10°P172 Thus 3/2r°<A<5X10° and 0<m?
<1x10°° for 2/D;<a<2 andDy=4. We see that all
conditions(i)—(iii ) are satisfied here.
f2=R,/2k°D;. (4.14 In this section we considered four simple examples of the
effective potential and showed that some of them satisfy con-
Let M, be a three-dimensional sphere; theg=6 and«?  ditions (i)—(iii).
=22, To get a minimum of the effective potential for a
scale factor,=10Lp we should takef?~5X 10%. For this v, INTERNAL SPACES WITH TWO SCALE FACTORS
value of a. and for Do=4 the mass squared is? . . _ _ _
=110 5<M2,. Thus, all three condition8)—(iii ) are sat- In this section we extend the consideration of possible
isfied. excitons from effective potentials satisfying conditions
(3.18 to internal spaces with two scale factors. We analyze
three potentials: the pure geometrical potential, the effective
potential of a perfect fluid, and the monopole potential. Sta-

2

Condition (i) is satisfied if

D. Perfect-fluid potential p=Ae~*P1£

The one-component perfect-fluid potential refdis, 42 bility considerations for Casimir-like potentials can be found
in our papel36].
p=Ae 018, (4.19 paper36]
where A is an arbitrary positive constant. It describes the A. Pure geometrical potential Ut o=Uesr (p=0)

vacuum in the external space and a perfect fluid with the |y this case the condition for the existence of an extre-

equation of stateP=(a—1)p in the internal spaceM;.  mum U gt o/ 9B8“=0 implies a fine-tuning
Physical values ot are restricted to '
RD;

1/2 i
K a8
R DJ e’c (5.1

Re .« 2A "
O<a<2. (4.16 D,° 2Bc=ﬁ, k=12, ef=

It is easy to see that the case=0 corresponds to the
vacuum in the spac®l; and contributes to the bare cosmo-
logical constantA. Therefore, we shall not consider=0

of the scale factors and s§r=sgrR;. From the Hessian

because in this case we return to Sec. IV A. The other lim- _ PUeio|  AAes[ DiDy + 5D
iting case witha=2 formally coincides here with the mono- Aoik= " k| T Da—2|Do—2 @ %Kk
. ap'ap 0 0
pole potential(4.10. Be
For the perfect-fluid potentight.15 a vanishing effective 4A [ D.D 5 2
cosmological constanf ¢4=0 [Eq. (3.20] and extremum = _['_k+5ika exr{— — > DAL
condition (3.21) yield D—-2[Dy-2 Do—2=1
R,e®P172he= 124D, A (4.1 (5.2
and we see that, according to the Sylvester criterion where
8(011>0, 8(22>0, and ag1d(c)20> a(zc)l_z, there exist
_ap._ 2aDy massive excitons for this effective potential in the case of a
Rie™ “Pe= aD,—2'" (4.18 negative cosmological constak<<O and negative scalar

curvaturesR, < 0. The masses of the excitons are easy cal-

For the second derivative of the effective potential in theculated as eigenvalues of the mat@x 1A, [Egs.(3.15 and
minimum we obtain (3.16)]. Because of
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11 A1t 12 o2 A2t ()12

_ Dl D_2 Dl D_2 4Aeff l 0
G—lAC: = - (53)
12 A1t g1z A2z A2zt @12 Do—2\0 1
D, D-2 D, D-2
they are given as
2
4A 4A 2 A
2_ 2 eff:_ _ i
M=M= 5 =2 D—ZeXF{ Do 224 D'BC}
RiR, Y2 2
_ ~BE\2D; /(Dg—2) +1( a—B2\2D,/(Dg—2) +1
2’D1D2 (e Fe) (e7Fe)
—D,/(Dg—2)
_ | Raf|ReDy 7720 (e283)(D-2)/(Dg-2) (5.4)
D4|[R:D> ’

where the last line follows immediately from the fine-tuning  For brevity we introduce the abbreviations
condition (5.1). From Eq. (5.4 we see that the exciton

massesn, ,m, of the two-scale-factor model are degenerate 2 @)
and related to the corresponding effective cosmological con- 2—;1 ;"' D;
stant Ao in the same way as in the one-scale-factor case u:i=a@+ ——o—, v@:=h,a®,

(4.4). As in the one-scale-factor model, for specific space D-2 ’

configurations the two-scale-factor model allows the exis-

tence of excitons satisfying physical conditiai3s18). L 2ADy
Let us illustrate this situation with an extended version of ~ k"~ D-2"

the example of Sec. IVA. Suppose th&i;=4; M,

_ (a) 1 (a 2
ha:=K2A.e” 1 P1hcg™ 22 P2he>Q,

=HPYI';,Rj=-Dy(D;—1), D;=2, andag;=10FLp; _ 5 2 .
M,=HP2/T,,R,=—D,(D,—1). Mass formula(5.4), ef- ha:=hsexp — 5 _22 DAL (5.7)
fective cosmological constant and fine-tuning condiiisri) o=l
read, in this case, . .
The extremum condition and Hessian read then
mi=mj=2(D,—1) P22x 10 2P2*IM3,
ouU
Agg= —(Dp—1) D22 10-202 7417 ‘T(”:o, k=1,2,
J
ae2=(Da— 1)Y= (D,— 1)Y10PLp. (5.5 A
m
Thus conditions(3.18 are satisfied for internal spacés, o 2 (@) p—al®D1 a2~ al®D, 82
with dimensionsD,=D, .;=40. Indeed, in the case @, he:= 0t D 2‘1 Adiie " Tatee 2
=40 we have m?=2x10"1M3, A 4=-10 2%, ’
a()2=6x10°Lp and hence forD,>40 the relationsm, —Re 2Pe=0, k=1,2 (5.9
<Mpy, |Aer|<10 1% Ap;, and agy=Lp hold, as required
in conditions(3.18). 92U o 4A o[ DDy
o= o] = D a0
B. Perfect fluid BB Be

For a multicomponent perfect fluid with energy density mo
(3.27 the effective potential reads + 21 haal®Di(a!¥Di—268;) (5.9
a=

2 |\ —2[(Dg—2) 2 _
Uer=| [T ePi# — 2> Re 2P+ A and from the auxiliary matrix
=1 =1
m 2 — 4Aeff
G Adk=— =5 Skt ik,
+K22 Aaexp< -2 @D |. (5.6) (G Achic= =5 =5 9 Jic
a=1 k=1
m
FoIIo_wing the same scheme as in the _p_revious consi(_jerations Jic= E vff‘)(Dkui(a)— 25,) (5.10
we first calculate the extremum condition, the Hessian, and a=1

exciton masses in their general form and then analyze some
concrete subclasses of potentials. we calculate the exciton masses squared as
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, 4Ag 1 , m
mi ,=— Do—2 + E[Tr(J)t VTre(J)—4detd)]. Jix=DW; =28, W,, W;:= 2 u@p@,
a=1
(5.11)
From Eq.(5.8) we see that the extremum condition has the
1 .
form of a system of equations in variableg=e #c Wz-—aZI v® (5.16
, -
andz,=e F,
- ()0, _ a0, , read Trg)=D W,;—4W,>0 and detd)=2W,(2W,
l=Ci+Dyx azl Al 2" 7Z,? "Rz =0, k=1,2, —D'W;)>0. However, because®="h,a®>0 and hence

(5.12 W,>0, this leads to a contradiction. Thus, for the existence
of massive excitonmi2>0 the effective cosmological con-

and for a given point p={A,R;,R,,A;,..., stant must be negativé4<O.
Am.af?, ... a7} in parameter space3{" ) positions of
extrema should be found as solutions of this system. In the 2. One-component perfect fluid witl, # a,

(a) (a) i . . . . . .
general case ofn>1 and ;™ real (¢ eR) this can be Again massive excitons are possible for negative effective
done most efficiently by numerlcal methods. Partially ana ‘cosmological constants .<0 only. Here, on the one hand,

lytical methods can be applied, e.g., fof” rational @®  \ye have in the case of\q=0 det(d)=—28v,v,(Dy
(). In this case the representatief’D;=n{?/d(® holds  —2)/(D—2)>0, & =D,a;+D,a,—2, and hences<0.
with natural numeratoni(a)eN and denominatodi(a)el\(+ , On the other hand, from T3)>0 it follows that[ a;+ a5
wheren® ,d® are relatively prime, an@ (n®,d®)=1  —(6+2)/(D—2)]6>0 and hence & (Dy—2)(a;+ ay)
(whereG denotes the greatest common denominatotro- +Dja;+Dya,. Becausexy, >0 this is impossible.
ducing the least common multiplé of the denominator$

=£d®,... df") and the natural numbersd{®: 3. One-component perfect fluid witl; = a,= a
=(1/d{®)n{¥ one has a{*D;=v{V/I. Equations (5.12 For this subclass extremum conditiof&8) can be con-
transform then to a system of polynomials siderably simplified to yield
m
le=Cy+ DszaZ:L A uf(a)yfl y2<2a>_ Ry2'=0, k=12, h= k2Ae~ @(D1Be+D262)
(5.13 ~ 1 [D-2
in the new variables/,=z.", which can be analyzed by - (Do—2)a+2| Dy Rie Tem2n 619

algebraic methodgéresultant techniquelgt9] and techniques

of algebraic geometry50]) and for rational parameters by and the same fine-tuning condition as in the case of a pure
methods of number theorjp1]. So, for common roots of geometrical potential
equationd ; =0 andl,=0 the resultantp49] Ry [I;,1,] and

Ryz[l 1,12] must necessarily vanish, R,

o 262
5. =p.e (5.18

Ry, [11.12]=wW(y2)=0, Ry [l1,l2]=w(y;)=0,

(5.19
An explicit estimation of exciton masses and effective cos-
and the analysis of Eg$5.12) can be reduced to an analysis mological constant can be easily done. Using E&s7),
of the polynomialsw(y;),w(y,) of degree (5.1, and(5.16), we rewrite the exciton masses squared as

dedw(y;)],dedw(y,)]<[l max a¥'D;+ a;¥'D,,2)]? m2 1
(5.15 (m§>=m[—4A+h[(Do—2)a+2]

in only one of the variabley, andy,, respectively. For D a

explicit considerations of extremum positions with the help X ) -2 ] ;{ Z D, BC}

of algebraic methods in the case of Casimir-like potentials 0 Do—2i=

we refer to[36]. (5.19

We now turn to the consideration of some concrete sub-

classes of perfect fluids. . ) . )
and transform with Eq(5.17 inequalitiesm{,>0 andh

1. m-component perfect fluid withe® = a(® >0 to the equivalent condition
In this case there exist no massive excitons for vanishing

. : _ 2 2
effective cosmologlcal constants .4=0. Indeeq,m1’g>0 A<C<0. (5.20
and Eq.(5.12 imply Tr(J)>0 and detd) >0, which with D-2
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Hence stable space configurations with massive excitons aend

only possible for internal spaces with negative curvature )

R,<0. Reparametrizing\ according to Eq(5.20 as 1 D,—1
K P 1)\ g q A=lS ezl (5.26
D-2 2= Di
A=——(C—1), (5.21
2 so that, as for the one-scale-factor model, extrema are only

ossible if and only ifR,>0 andA>0. Because the mono-
%ole potential formally coincides with the potential of a per-
fect fluid with parametersy(?)=24,,, the exciton masses
are given by Eq(5.11)

mi,f%[Tr(J)i\/TrZ(J)—4detJ)], (5.27

with 7>0 a new parameter, we get for exciton masse
squared and the effective cosmological constant

m3 2 2 i
(m) ex‘{‘ b0 2% D‘ﬁJ’
(5.

0

D ar _
( )_zc

where in terms of abbreviation$.7) matrix J reads

D2 (D-2)a
At == 5| "Dg—2)at2 }
2 2 Ji=4hy(D —1){5- _ D (5.29
xem{—D ZEJDﬁ%- (523 A SR |
0~ 4i=1

) o One immediately verifies that T¥f>0, detd)>0,
According to definition(5.21) and Eqs(5.17 and(5.18), the  T2(3) — 4detJ)=0 for dimensiond,>1 andD,>1, and

parameterr can be expressed in terms Gfand R as hence G<m3<31Tr(J)<m2<Tr(J). This means that physi-
k
(Do-2)at2 2 il cal conditti)ons(3.18) are satisfied if TRJ)<M3, and e’e
_ .2 =|D’ al2 “k =Lp. Substituting
T=K°A D2 |C| kljl R, (5.24 PI
2
. . ~ Rk _ o pk 2 .

A comparison of Eqs(5.22 and (5.23 with formula (5.4) hy=-=-¢ Zﬁcex;{ - 2 DiBs (5.29

shows that for 2D Do—25

2 (Dg—2)a+2 into Eq. (5.28, we get the matrix trace as

r<79=|C|min —,
0=ICl D'a (D-2)a

2 [ & (D1
Tr(J)=D_2{E( -

R(D—2-D,)e 2
k=1 Dy

we return to the pure geometrical potential considered in

Sec. V A. So physical condition@.18 are fulfilled for in- 5 2
ternal space configurations with sufficiently high dimensions X ex;{ -5 _22 DiB.|. (5.30
greater than some critical dimensién,;;. From Eqgs.(5.22 0 4i=1

and (5.23 we see that, depending on the value 0fthis
critical dimensionD.,; can only be larger than that for the With this formula at hand we have, e.g., for an internal space
pure geometrical model. According to E&.24), there exist ~ configuration M;xM,, M =S%, a1 =10Lp; and M,=
excitons for any positive and finite values of the fluid param-S°, a(¢)>=10Lp the estimate T)~56x 10" M3 <M3,
eterA, but the large for fixed a, the larger would be the and all conditiong(i)—(iii) of Eq. (3.18 are satisfied.
critical dimensionD ;. (Here we take into account thaf
= u and the volumeu of the compact internal factor spaces VI. EXCITON MASSES AND SCALE FACTOR
with constant negative curvature is finjte. CONSTRAINTS

Comparing the results of this subsection with the results . . ) . )
of Sec. IV D, we see that there exists a different behavior of [N this section we derive a relation between the exciton
the perfect fluid models in the case of vanishing effectiveMaSSesc)1,Mc)2 Of a model with two independently vary-

1 p2 H
cosmological constantA.;=0. For the one-scale-factor N9 Scale factors®, B and the effective mass ), of the
model massive excitons are allowed fbg=0, whereas in exciton that occurs under scale factor reduction, i.e., when

the two-scale-factor model they cannot occur. An explana:[he scale factors of the model are connected by a constraint

tion of this situation will be given in Sec. VI. B=pB'=p% In order to simplify our calculation we intro-
duce the projection operatd® on the constraint subspace
C. Monopole potential p=32_, (f,) 2620k Rp={B=(B".B%)|p'~p*=a =0, a=(1,-1)} of the

) ] two-dimensional target spadfé-zr of the o-model:
For the monopole potential the extremum conditi8ri)

leads in the case of vanishing effective cosmological con- PR%zRéCR%. (6.1)
stantA.+=0 to a fine-tuning of the scale factors
R Explicitly, this projection operator can be constructed from
ke 28D 5.2 the normalized base vecta of the subspac&%. With e
YY) (5.29 ) P
2Dyx“(fy) =(1/2)(}) we have
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shows that stable configurations of reduced models with
. (6.2 mf,,>0 are not only possible for stable configurations of
the unreduced modeh(zc)1>0, m(zc)2>0, but even in cases
P2=pP, andPa=0. when the potentiall¢ has a saddle point g8, and the
Let us now calculate the exciton masg,), for the re- unreduced m2()del is ugstable. For2 the maszses we have in
duced model. For this purpose we introduce the exciton Lathese casesn;>0, mi;),<0 or mi,;<0, m{;,>0 and

grangian, written according to Sec. lll in terms of the fluc-massive excitons in the reduced model correspond to
tuation fields7=(171 7?), where'=gi— g exciton-tachyon configurations in the unreduced model.
1 1 c*

1 1/1
1 s (1 1)251 1

S
=ee _E

Lexei=—[1GK 7+ 7A ¢ 7]- 6.3
exi= ~[7GKn+ 1A 7] ©3 VIl. CONCLUSIONS
K:=d,9(“#"3, denotes the pure kinetic operator. Under This paper was devoted to the problem of stable compac-
scale factor reductiom= (7, %) this Lagrangian transforms tification of internal spaces. This is one of the most important
to problems in multidimensional cosmology because via stable

compactification of the internal dimensions near Planck

Lexei= —[v17K 7+ ¥(¢)27°], (6.4  length we can explain unobservability of extra dimensions.

With the help of dimensional reduction we obtained an ef-

— _ . — fective four-dimensional theory in Brans-Dicke and Einstein
y1:=28'Ge=2, Gij, y2=28"Ace= .Z Aij» frames. The Einstein frame was considered here as a physical

. 6.5 one[52]. In this frame we derived an effective potential. It

' was shown that small excitations of the scale factors of in-

so that the substitutio= y[llzz,// yields the effective one- ']Eernal ?paces_ near n|1|n|mat(_)f|the eﬁj[e(t:_tlve Ipoter][tlal :jake the
scale-factor Lagrangiant,g= — [ R -+ l//m(zc)odf] with orm of massive scalar particlégravitational excitonsde-

. 5 T veloping in the external space-time. Detection of these exci-
exciton massmic)o=¥()2/ 1. Taking into account that (ainns can prove the existence of extra dimensions. Particu-

e'Age=T{PAyl . A(c)ZQ'SéM(ZC)ScQ, and M(zc) lar examples of effective potentials were investigated in the
=diag(m(zc)l ,mfc)z), the needed relation between the exci-one- and two-internal-space cases. Parameters of the models
ton masses of the reduced and unreduced two-scale-facttrat ensure a minimum were obtained and masses of the

models is now easily established as excitons were estimated. The solutions at the minima of the
potential are stable against small perturbations of the scale
Mieo=271 TTQPQ SIM% Sc]. (6.6  factor(s) of the expanding external Univer§g6]. We would
like to note that the problem of stable compactification in
With the use of MCMs with more than one internal scale factor was consid-
ered first for pure geometrical models in Rgf28,29. How-
, 1 ,b-2(1 0 ,D-2 ever, the analysis of the effective potential minima existence
QPQ=5D m(o 0), y1=D Dy—2 (6.7 was not complete there.

Our analysis shows that conditions for the existence of

and the SQ@) rotation matrixS, from Egs.(3.13 and(3.14), stable configurations may be quite different for one- and

this formula can be considerably simplified to give the ﬁnaltwo-scale-factor models._ Fo_r exa"T‘p'e' in the case of a one-
relation scale-factor model that is filled with a one-component per-

fect fluid stable compactifications are possible for vanishing
(6.9 effective cosmological constamt.s=0 and parameters
from the restricted interval BV;<a<2 determining the
In its compact form this mass formula implicitly reflects eguation of state in the internal spag=(a—1)p. In the
the behavior of the effective potential . in the vicinity ~ c2S€ of two-scgle—factor 'models stablg compactifications can
exist for negative effective cosmological constantg<0
) ) _ ) ) only, but for values of the parametarfrom the usual inter-
squaredng); , M), describe the potential as a function over ya| 0<a<2 [here @ determines the equations of state in
the two-dimensionaB, vicinity QBC, whereasm(zc)0 charac- poth ?nternal s_pace§>1=_(a— Lp an(_j P,=(a—1)p]. At
terizes Uqr as a function over the line interva ; NR3 first sight the difference in the behavior of these two models
¢ looks a bit strange because the one-scale-factor model can be
obtained by reduction of the two-scale-factor model with the
help of the constrainB;=B,=8. As it was shown in Sec.
VI, such a different behavior may take place because stable
configurations of reduced models are possible not only for
a(c)na(c)22>(a(c)12)2 (6.9 stable configurations of unreduced models, but even in cases
when the effective potentidl o of the unreduced model has
and a saddle point. In the case of our two-scale-factor model with
) one-component perfect fluid we get such a saddle point for
Mic)o>0:  (Aeyrat ezt 28(c)12)>0  (6.10  configurations withA .4=0 and 2/0+ D)< a<2.

2 2 H 2
M(,)0=COS () Mig); +SINP(arg) ME 5.

Q[;CCR$ of the extremum poingB,. So the exciton masses

only. A comparison of the minimum conditions of the unre-
duced and reduced two-scale-factor models

2 .
Mig)12> 00 a)11>0, a()22>0,
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In the present paper we did not consider the case of desn the scale factor of the external space. It would allow, for
generate minima of the effective potential, for example, selfexample, the consideration of a perfect fluid with arbitrary
interaction-type potentials or “sombrero-type” potentials. In equation of state in the external space.
the former case one obtains massless fields with self-

interaction. In the latter case one gets massive fields together
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