ROBL-CRG	Experiment title: Reciprocal space mapping (RSM) of Si after C implantation / formation of SiC	Experiment number: 20_02_009
Beamline:	Date of experiment:	Date of report:
BM 20	1318.9.98, 30.101.11.98	10.8.99
Shifts:	Local contact(s):	Received at
15	Dr. N. Schell	ROBL:
		12.8.99
Names and affiliations of applicants (* indicates experimentalists):		
F. Eichhorn [*] , N. Schell [*] (a), W. Matz, P. Reichel [*] , M. Betzl [*]		
Forschungszentrum Rossendorf		
Institute of Ion Beam Physics and Materials Research		
P.O.B. 510119, D-01314 Dresden, Germany		
(a) present address: ROBL-CRG at ESRF Grenoble		

Report:

Silicon carbide is well known as a wide band gap semiconductor with a high thermal and chemical stability for realizing electronic devices for high frequency, high power and high temperature applications. Ion implantation of C into Si is a suitable method for synthesizing SiC. In this experiment the formation of SiC crystallites is studied if the volume concentration of C is near 0.45 of the stoichiometric value after implantation of 4×10^{17} cm⁻² C ions with an energy of 195 keV at 500 °C or 800 °C. The grown particles were identified as cubic 3C polytype crystallites by x-ray diffraction; and the strain in the Si matrix and its changes were followed (see report to the ROBL experiment 20_02_001). Furthermore the orientation relation between the lattice of the SiC particles and the Si matrix is determined by the measurement of reciprocal space maps (RSM) of symmetric SiC(002) - Si(004) and asymmetric SiC(113) – Si (113) reflection pairs. An orientation alignment of the cubic axes of the SiC crystallites to the Si matrix is confirmed.

Fig. 1 shows the RSM near the SiC(002) reflection for Si(001) wafers implanted with 4×10^{17} cm⁻² C ions with an energy of 195 keV. The centre of the Si(004) reflection lies at q*=0 and q_⊥=46.3 nm⁻¹. For implantation at the lower temperature of 500 °C the cubic axes of the SiC crystallites are orientated with a nearly isotropic spread (FWHM ≈ 4.5 °) parallel to Si [001] direction.

A higher volume part of SiC grows during carbon implantation at 800 °C – the maximum intensity of the SiC(002) intensity is 3.5 times higher than in the former case. Furthermore, a more complex distribution is found (right hand side of Fig. 1): The majority of crystallites is highly aligned with a spread of 2.5 ° isotropically distributed around [001] shown by the symmetric top of the SiC peak, whereas the minority is anisotropically distributed around this axis with preferences into the <111> directions (streaks at the bottom of the SiC peak).

Fig. 1

Reciprocal space maps near the SiC(002) reflection for Si wafers implanted with $4x10^{17}$ cm⁻² C⁺ with an energy of 195 keV at 500 °C (on the left) or 800 °C (on the right), respectively. The isointensity lines are choosen in a logarithmic scale, the bulk ones corresponds to 512 counts and 2048 counts per 3 sec.