ROBL-CRG	Experiment title: <i>in-situ</i> temperature dependent measurements of phase transformations in N-implanted Ti6Al4V alloys	Experiment number: 20_02_019
Beamline:	Date of experiment:	Date of report:
BM 20	from: 9.5.99 to: 10.5.99	26.08.99
DIVI 20	19.6.99 22.6.99	20.00.77
Shifts:	Local contact(s):	Received at ROBL:
15	N. Schell	30.8.99
Names and affiliations of applicants (* indicates experimentalists):		
*F. Berberich ^{a)} , *W. Matz, E. Richter, *N. Schell ^{a)}		
Forschungszentrum Rossendorf, PF 510119, D-01314 Dresden		
Institute of Ion Beam Physics and Materials Research		

^{a)} also ROBL-CRG at ESRF

Report (first part):

The experiments are part of a general work to investigate the structural mechanisms of the enhanced hardness of the technical alloy Ti-6AI-4V due to N⁺ implantation and its degeneration. Samples were implanted with doses (1 - 6) x 10^{17} N⁺/cm² at 80 keV. The structural implications of the loss of hardness during annealing were studied by in-situ XRD-experiments with synchrotron radiation at a sample implanted with a dose of $6x10^{17}$ N⁺/cm². Additional sample characterisation was performed by SEM, ERDA and Vickers hardness.

The as-received sample shows only Bragg peaks of the hexagonal α – phase, which is the main phase, and peaks of the cubic β -phase. After the ion implantation we observe the TiN_{0.3} at first and then the TiN Bragg peaks. The intensity of these peaks show a direct correlation to the implanted doses. The Bragg peaks of both nitride phase are significantly broadened. From the line broadening a mean crystalline size of 5 nm was estimated. It was concluded that the observed hardening of the alloy is of precipitation type rather than the formation of a TiN layer.

The in-situ experiment with a Ti-6Al-4V sample implanted with a dose of 6 x 10^{17} N⁺/cm² was performed at ROBL with a high temperature diffraction chamber. The investigated temperature region was from 500°C to 750°C in steps of 50K. At each temperature two X-ray patterns were recorded; for an angle of incidence of 1° (approximate penetration

depth of 200 nm) and another one for 4° (up to 1000 nm depth). The scanning time for each diffraction pattern was 30 min. So the duration of the in-situ experiment corresponds to the typical annealing time used for these alloys.

At 500°C the pattern consists of the Bragg peaks from both Ti phases and from TiN formed by implantation. With increasing temperature the intensity of the TiN peaks decreases. The formation of Ti_2N begins at a temperature between 650°C and 690°C. At the final temperature of 730°C all TiN peaks have completely vanished and only Ti_2N peaks are observed besides the Ti-phases. From a plot of the integrated intensities for TiN and Ti_2N in Fig. 1 it can be seen, that this phase transformation is a continuous process.

ing in-situ annealing

th the α -Ti and β -Ti g.2 . Especially, the \Rightarrow range of 200K is ameter significantly. realing is connected

with a reduction of the V-content in the β -Ti. This is suggested as an additional process for hardness reduction besides the phase transformation.

