Practical trainings, student assistants and theses

Self-organized nanopattern formation on crystalline SiGe surfaces (Id 342)

Master theses / Diploma theses

Foto: AFM images of ion-induced surface patternings ©Copyright: Dr. Denise ErbVarious metals, semiconductors, and oxides form regular nanoscale surface patterns in a complex process of self-assembly under low energy ion irradiation. While the elemental semiconductors Si and Ge have been extensively studied in this respect, there is no such investigation for alloys of Si and Ge. We want to explore which nanoscale pattern morphologies can emerge on SiGe surfaces and how they can be modified via the conditions of ion irradiation. We expect to obtain new insights into the complex process of ion-induced nanopattern formation in technologically relevant materials.
This work comprises the preparation of nanopatterned surfaces by low energy ion irradiation, imaging these surfaces surfaces by atomic force microscopy and electron microscopy, the quantitative analysis of these data, as well as simulating the patterning process based on continuum equations or kinetic MonteCarlo models.
The project provides an introduction to research at a large scale facility (Ion Beam Center IBC) and opportunities for networking with HZDR specialists (f/m/d) on nanoscale surface modification and characterization.

Department: Ion Beam Center

Contact: Dr. Erb, Denise

Requirements

-- completed B.Sc. studies or Vordiplom in experimental physics, materials science, or related subject
-- good command of German and/or English
-- ability to work independently and systematically

Conditions

-- place of work: HZDR, location Rossendorf
-- project duration: 12 months, flexible starting time

Links:

Online application

Please apply online: english / german

Druckversion


Self-organized nanopattern formation on crystalline surfaces of III-V semiconductors (Id 341)

Master theses / Diploma theses

Foto: AFM images of ion-induced surface patternings ©Copyright: Dr. Denise ErbVarious metals, semiconductors, and oxides form regular nanoscale surface patterns in a complex process of self-assembly under low energy ion irradiation. Depending on the experimental conditions nanopatterns of very different morphologies will form. They can be categorized into either the erosive or diffusive regime – depending on the dominant mass transport processes on the surface. For compound semiconductors the erosive regime has rarely been investigated so far. We want to find out under which conditions the expected nanopattern formation in the diffusive regime takes place. We expect to obtain new insights into the complex process of ion-induced nanopattern formation in technologically relevant materials.
This work comprises the preparation of nanopatterned surfaces by low energy ion irradiation, imaging these surfaces surfaces by atomic force microscopy and electron microscopy, the quantitative analysis of these data, as well as simulating the patterning process based on continuum equations or kinetic MonteCarlo models.
The project provides an introduction to research at a large scale facility (Ion Beam Center IBC) and opportunities for networking with HZDR specialists (f/m/d) on nanoscale surface modification and characterization.

Department: Ion Beam Center

Contact: Dr. Erb, Denise

Requirements

-- completed B.Sc. studies or Vordiplom in experimental physics, materials science, or related subject
-- good command of German and/or English
-- ability to work independently and systematically

Conditions

-- place of work: HZDR, location Rossendorf
-- project duration: 12 months, flexible starting time

Links:

Online application

Please apply online: english / german

Druckversion


Self-organized nanopattern formation on crystalline GaAs and InAs surfaces (Id 340)

Master theses / Diploma theses

Foto: AFM images of ion-induced surface patternings ©Copyright: Dr. Denise ErbVarious metals, semiconductors, and oxides form regular nanoscale surface patterns in a complex process of self-assembly under low energy ion irradiation. Studies of the elemental semiconductors Si and Ge have shown that the symmetry of their crystalline surface strongly influences the morphology of those nanopatterns. However, only one particular surface orientation has been studied analogously for the compound semiconductors GaAs and InAs. While for these materials, the nanopattern morphology is mainly attributed to their compound character, a significant additional influence of the surface crystal structure is expected. We want to demonstrate this by investigation the ion-induced pattern formation on crystalline GaAs and InAs with various surface orientations. The resulting surface patterns may find application in the bottom-up fabrication of complex nanostructured systems.
This work comprises the preparation of nanopatterned surfaces by low energy ion irradiation, imaging these surfaces by atomic force microscopy and scanning tunnelling microscopy, the quantitative analysis of these data, as well as simulations of the patterning process based on continuum equations or kinetic MonteCarlo models.
The project provides an introduction to research at a large scale facility (Ion Beam Center IBC) and opportunities for networking with HZDR specialists (f/m/d) on nanoscale surface modification and characterization.

Department: Ion Beam Center

Contact: Dr. Erb, Denise

Requirements

-- completed B.Sc. studies or Vordiplom in experimental physics, materials science, or related subject
-- good command of German and/or English
-- ability to work independently and systematically

Conditions

-- place of work: HZDR, location Rossendorf
-- project duration: 12 months, flexible starting time

Links:

Online application

Please apply online: english / german

Druckversion


Optical properties of Ag nanocube ensembles (Id 339)

Master theses / Diploma theses

Ensembles of nanoscale metallic objects such as Ag nanocubes exhibit particular optical properties, which can be influenced by size, shape and spatial arrangement of these objects. Ion beam based techniques enable the preparation of nanopatterned surfaces, on which Ag nanocubes can be arranged in a regular fashion, as well as the modification of the nanocube shape by ion erosion. Thus the effects of changes in arrangement and shape on the optical properties of the ensemble can be studied.
This work comprises the preparation of nanopatterned surfaces by low energy ion irradiation, the arrangement of Ag nanocubes on such surfaces and their deformation by ion beam erosion, the imaging of theses sample systems by atomic force microscopy and scanning electron microscopy, the measurement of optical properties by cathodoluminescence and ellipsometry, and the quantitative analysis of the obtained data.
The project provides an introduction to research at a large scale facility (IBC) and opportunities for networking with HZDR specialists (f/m/d) on nanoscale surface modification and characterization.

Department: Ion Beam Center

Contact: Dr. Erb, Denise

Requirements

-- completed B.Sc. studies or Vordiplom in experimental physics, materials science, or related subject
-- good command of German and/or English
-- ability to work independently and systematically

Conditions

-- place of work: HZDR, location Rossendorf
-- project duration: 12 months, flexible starting time

Links:

Online application

Please apply online: english / german

Druckversion