Practical trainings, student assistants and theses

Development and experimental investigation of a multi-channel flow body sensor (Id 421)

Bachelor theses / Master theses / Diploma theses / Compulsory internship

The development of a multi-channel flow body sensor according to patent WO 2010/069307 A1 aims to quantify the gas content in flow-carrying components. A decisive advantage of this sensor lies in its optical measuring principle, which is based on fiber-optic coupling and the analysis of the light output signal. This avoids electrical potentials in the measuring area, offering significant advantages over electrical measuring methods (intrinsic safety), especially for explosive mixtures.

Preliminary tests at the Institute for Experimental Fluid Dynamics at the Helmholtz Center Dresden-Rossendorf on gas-liquid flows showed that a clear binarization of the sensor output signal can be achieved due to the capillary effects in narrow channels and the different refractive indices of the gas and liquid phases. Building on previous work with a single-channel sensor prototype based on a polymer optical fiber (POF) with a diameter of 1 mm, the following tasks must be completed as part of further research.

Tasks:

  • Adjusting the POF diameter to 1.5 mm in the single-channel configuration.
  • Conducting experimental investigations of the new single-channel prototype using the already developed test system and evaluation programs.
  • Designing a multi-channel sensor body for gas content measurements in the system.
  • Developing a transition adapter to optimize the flow distribution between the DN10 flow pipe and the sensor body.

Department: Fluid process engineering

Contact: Condriuc, Ivan, Dr. Kipping, Ragna

Requirements

  • Students majoring in fields such as process engineering, mechanical engineering, or chemical engineering.
  • Interest in fluid mechanics and the development of measurement technology.
  • Experience with 3D CAD tools.
  • Basic knowledge of Python programming

Conditions

Immediate start possible
Duration according to the respective study regulations

Online application

Please apply online: english / german

Druckversion


Experimental investigation of Taylor bubble shape in narrow tubes with constrictions (Id 390)

Bachelor theses / Master theses / Diploma theses / Compulsory internship / Volunteer internship

The presence of geometrical singularities in pipes may significantly affect the behavior of two-phase flow and subsequently the liquid film thickness or bubble shape. Therefore, it is an important subject of investigation in particular when the application concerns industrial safety and design.
In this work, the shape of individual air Taylor bubble in vertical tubes with constrictions subjected to counter-current liquid is experimentally performed and the influence of the obstacle on the bubble shape is analyzed. The restrictions that the constrictions on narrow tubes imposes on the motion of the interface, and its effect on the bubble shape, will be addressed in terms of geometrical and flow parameters.

In this work, the student will experimentally investigate and record high quality images and gain knowledge about experimental work regarding two-phase flow, image acquisition with MATLAB and data organization. The results will lead to the development of a flow regime map in function of diameter and viscosity.

Institute: Institute of Fluid Dynamics

Contact: Maestri, Rhandrey

Requirements

General interest in fluid mechanics;
Preliminary experience in experimental work is desirable;
Good written and oral communication skills in either English or German.

Conditions

Immediate start;
Duration of the internship is anticipated to be 3 months but can be modified according to study regulations;
Remuneration according to HZDR internal regulations.

Online application

Please apply online: english / german

Druckversion