Publications Repository - Helmholtz-Zentrum Dresden-Rossendorf

1 Publication

Experimental modeling of the continuous casting process of steel using low melting point metal alloys - the LIMMCAST program

Timmel, K.; Eckert, S.; Gerbeth, G.; Stefani, F.; Wondrak, T.

This paper presents the new experimental facility CONCAST which was designed for modeling fluid flow and transport processes in the continuous casting of steel. The facility operates at temperatures of 200°C - 400°C by using the low melting point alloy SnBi. The main parameters of the facility, including the dimensions of the test sections, will be given. The resultant possibilities with respect to flow investigations in the tundish, in the submerged entry nozzle, and in the mould will be discussed. Over the period of assembling and commissioning the CONCAST facility, the small-scale set-up Mini-CONCAST was employed which uses the alloy GaInSn that is liquid at room temperatures. At this precursory facility an experimental program was started which is focused on quantitative flow measurements in the mould and in the submerged entry nozzle (SEN). The Ultrasound Doppler Velocimetry (UDV) and the Contactless Inductive Flow Tomography (CIFT) were applied to determine the flow structure within the mould. First experimental results will be presented here for a single and a two-phase flow in which argon gas bubbles were injected at the inlet of the SEN. According to the concept of the electromagnetic brake the impact of a DC magnetic field on the emergent jet flow from the SEN has been studied.

Keywords: continuous casting; liquid metal model experiments; flow measurements; two-phase flow; electromagnetic brake

Publ.-Id: 13713