Publications Repository - Helmholtz-Zentrum Dresden-Rossendorf

1 Publication

Chemical fingerprinting of Hungarian and Slovakian obsidian using three complementary analytical techniques

Eder, F. M.; Neelmeijer, C.; Pearce, N. J. G.; Sterba, J. H.; Bichler, M.; Merchel, S.

The natural volcanic glass obsidian is one of the classical objects of archaeometrical analyses. Reliable provenancing by means of its highly specific chemical composition, the “chemical fingerprint”, can provide information about economy, policy and the social system of ancient societies.

Although Mediterranean obsidian have mainly been the focus of characterization since the pioneer work of Cann and Renfrew (1964), provenancing of Central and Eastern Europe obsidian sources attracts increasing attention in the past decades. Fingerprinting of Hungarian and Slovakian obsidian sources is of great interest especially for Central European sites where obsidian has been widely used (Williams-Thorpe et al., 1984, Kasztovszky et al., 2008, Biró, 2009).

The application of three complementary analytical techniques on the same set of raw material samples allows both, a more complete characterization of obsidian sources and a comparison of analytical results. The aim of this multi-methodical approach is to apply three different analytical methods, in particular:

  • Instrumental Neutron Activation Analysis (INAA),
  • Ion Beam Analysis (IBA) comprising of Particle Induced X-ray Emission (PIXE) and Particle Induced Gamma-ray Emission (PIGE)
  • Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS)

to detect a maximum element spectrum and to compare element concentrations determined with at least two analytical techniques. This way a check of self-consistency of analytical results is possible. Furthermore, it allows the identification of a maximum of compositional differences between Hungarian and Slovakian sources by revealing the most characteristic “chemical fingerprint” composed of more than 40 elements.

For this study, NAA, IBA and LA-ICP-MS measurements are scheduled to be applied to 25 raw material samples from sources from Hungary and Slovakia in cooperation with the Natural History Museum Vienna (Hammer, V. and Seemann, R., Department of Mineralogy and Petrography) and the Vienna Lithothek (Trnka, G., Department of Prehistoric and Protohistoric Archaeology).

Up to now, IBA studies have already been carried out using the external 4 MeV proton beam of the 6 MV Tandem accelerator of the Ion Beam Centre of Helmholtz-Zentrum Dresden-Rossendorf. Further NAA investigations will be performed at the TRIGA Mark II 250 kW research reactor of the Atominstitut in Vienna. LA-ICP-MS measurements will be conducted using the Thermo Element 2 ICP-MS coupled to an ArF gas Excimer laser system at the Aberystwyth University.

CANN, J.R. AND RENFREW, C, 1964. The characterization of obsidian and its application to the Mediterranean Region. Proceedings of the Prehistoric Society 30, 111-131.

WILLIAMS-THORPE, O., WARREN, S.E. and NANDRIS, J.G., 1984. The distribution and provenance of archaeological obsidian in central and eastern Europe. Journal of Archaeological Science 11, 183-212.

KASZTOVSZKY, Z., BIRÓ, K., MARKÓ, A. and DOBOSI, V., 2008. Prompt gamma activation analysis for non-destructive characterization of chipped stone tools and raw materials. Journal of Radioanalytical and Nuclear Chemistry 278, 293-298.

BIRÓ, K.T., 2009. Sourcing Raw Materials for Chipped Stone Artifacts: The State-of-the-Art in Hungary and the Carpathian Basin. In: Adams, B. and Blades, B.S. (Eds.) Lithic Materials and Paleolithic Societies (eds B. Adams and B. S. Blades), Wiley & Blackwell, 47-53.

Keywords: ceramics; glazes; glass and vitreous materials; ion beam analysis; neutron activation analyis; ICP-MS

  • Poster
    39th International Symposium on Archaeometry: “50 years of ISA”, 28.05.-01.06.2012, Leuven, Belgium

Publ.-Id: 16455