Publications Repository - Helmholtz-Zentrum Dresden-Rossendorf

1 Publication

Homogeneity testing of natural candidate reference materials for resource technology by three spatially-resolved X-ray methods

Michalak, P. P.; Renno, A. D.; Merchel, S.; Munnik, F.

Quality assurance of natural raw materials (e.g. ores) requires thorough studies on concentration and distribution patterns of technologically relevant trace elements within the mineral matrix at the microscale. Obtaining such a goal is yet only possible with the use of X-ray-based microanalytical methods and a proper set of homogeneous reference materials (RMs).
Three minerals of natural origin: pyrite (FeS2), columbite (FeNb2O6) and sanidine ((K,Na)(Si,Al)4O8) – candidates for RMs for resource technology – have been investigated for their spatial chemical microhomogeneity using three X-ray methods:

  • Electron Probe Micro Analysis (EPMA)
  • Particle Induced X-ray Emission (PIXE)
  • Synchrotron radiation-induced micro-X-ray Fluorescence (Sy-µXRF).

Quantitative (EPMA, PIXE) and qualitative (Sy-µXRF) elemental spatial distribution maps have been obtained for major and trace elements for each mineral. Several trace elements were detected in each of the matrices above the limit of detection (LOD).

EPMA III PIXE III Sy-µXRF
Beam size 2 µm Ø III 3 x 3 µm2 III 5 x 5 µm2
Mapping area 100 µm x 100 µm
Elements-
Pyrite S, Mn, Fe, Co, Ni, Cu, As, Se, Au III Fe, Ni, Cu, As III S, Fe, Ni, Cu, As
LOD range 20 - 350 µg/g III 9 - 28 µg/g III qualitative
Elements-
Sanidine Al, Si, K, Ca, Fe, Ba III K, Ca, Fe, Ga, Ge, Rb, Sr, Ba III Al, Si, K, Ca, Fe, Ga, Ge, Rb, Sr, Ba, Pb
LOD range 90 - 450 µg/g III 1 - 517 µg/g III qualitative
Elements-
Columbite Mg, Al, Ca, Sc, Ti, Mn, Fe, Zr, Nb, Hf, Ta III Ca, Sc, Ti, Mn, Fe, Zr, Nb, Ta, W, U III Sc, Ti, Mn, Fe, Y, Zr, Nb, Ta, W, Th, U
LOD range 40 - 810 µg/g III 24 - 940 µg/g III qualitative

Although all three non-destructive methods are based on X-ray detection, they provide complementary information on chemical composition and microhomogeneity of the tested minerals’ matrices as detection and excitation conditions influencing especially the spectra background and, thus, the LODs.

Most of the elements showed inhomogeneous distribution at the level of 1-3 µm, proving that the selected mineral specimens are not suitable as candidates for RMs. Consequently, artificial minerals are being synthesized and will be investigated by the validated set of X-ray analytical methods to proof their suitability as micro-RMs.

Keywords: reference materials; XRF; PIXE; EPMA

  • Poster
    ANAKON 2013, 04.-07.03.2013, Essen, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-17938
Publ.-Id: 17938