Publications Repository - Helmholtz-Zentrum Dresden-Rossendorf

2 Publications
On the Lorentz-force driven flow around an insulating sphere
Massing, J.; Baczyzmalski, D.; Weier, T.; Landgraf, S.; Cierpka, C.;
The Lorentz-force driven flow around an insulating sphere in a parallel electric and magnetic field was investigated experimentally and numerically. From the results, the lift force acting on the bubble due to the pressure reduction caused by the Lorentz-force driven flow was estimated, which was discussed in the literature as the primary cause for a faster bubble detachment in a parallel magnetic field. It could be shown, that the pressure force is several orders of magnitudes smaller than the buoyancy force and therefore has no significant effect on the bubble detachment. This finding is supported by the measurement results of the 3D3C velocity field around an elevated, axially magnetized sphere in an electric field. In the final paper the 3D3C flow around the bubble will be analyzed in greater detail and hydrodynamic mechanisms to explain the faster detachment will be further discussed.
Keywords: Lorentz force, electrolysis, Astigmatism Particle Tracking Velocimetry
  • Lecture (Conference)
    18th Lisbon International Symposium on Applications of Laser and Imaging Techniques to Fluid Mechanics, 04.-07.07.2016, Lissabon, Portugal
  • Open Access LogoContribution to proceedings
    18th Lisbon International Symposium on Applications of Laser and Imaging Techniques to Fluid Mechanics, 04.-07.07.2016, Lissabon, Portugal, 978-989-98777-8-8

Publ.-Id: 22836 - Permalink