Publications Repository - Helmholtz-Zentrum Dresden-Rossendorf

1 Publication
Prediction of Gas Holdups in Small and Large Bubble Columns Obtained from Advanced Imaging Techniques
Nedeltchev, S.; Schubert, M.; Hampel, U.;
The gas holdup is one of the most important parameters in the bubble column operation. Its successful prediction is important for the estimation of both the interfacial areas and the volumetric liquid-phase mass transfer coefficients. In the past several years, new imaging techniques for gas holdup measurements, such as the conductivity wire-mesh sensor as well as tomographic modalities have been used successfully for gas holdup measurements. Nedeltchev et al. (2014) have also shown that this data can be used for flow regime identification.

In this work, the gas holdup values were recorded in a small (0.15 m in ID) and a large (0.4 m in ID) bubble column equipped with perforated plate spargers (open area=1 %). A new model has been established, which predicts successfully the gas holdups in an air-deionized water system. It is based on both the theoretical and empirical evaluations of the gas-liquid interfacial areas. The correlation of Akita and Yoshida (1974) was assumed to be identical with the theoretical definition of the interfacial area. The Sauter-mean bubble diameters ds were estimated from the correlation of Wilkinson et al. (1994).

The theoretical gas holdups were corrected since the classical definition of the interfacial area is strictly valid for rigid spherical bubbles. All of our experimental conditions correspond to bubble diameters larger than 4.4×10-3 m, which means that the formed bubbles have an oblate ellipsoidal shape (Fan and Tsuchiya, 1990). It has been found that the common correction factor fc depends on both the bubble diameter (Eötvös number Eo) and the column diameter Dc (Bond number Bd). The effect of the column diameter (and Bond number) on the gas holdup should be carefully checked. As the superficial gas velocity Ug increased, the correction factors fc in the small column increased from 0.13 up to 0.25, whereas in the large column they increased from 1.33 to 2.55.

The approach is very useful since it predicts the gas holdups in the range 0.02 ≤ Ug ≤ 0.15 m/s irrespective of the prevailing flow regime. In the large column, the gas holdups were predicted with an average relative error (ARE) of 3.5 %, whereas in the small column ARE was 2.5 % (twelve gas holdup values in each column).
Keywords: Bubble Columns, Wire-Mesh Sensors, Gas Holdups, Prediction Model
  • Poster
    Tenth European Congress of Chemical Engineering, 27.09.-01.10.2015, Nice, France

Publ.-Id: 22857 - Permalink