Publications Repository - Helmholtz-Zentrum Dresden-Rossendorf

1 Publication
Complexation of trivalent actinides and lanthanides with aqueous phosphates at elevated temperatures (25-80°C)
Huittinen, N.; Jordan, N.; Lösch, H.;
The incorporation of actinides in solid lanthanide phosphates crystallizing in the monazite structure has been intensely investigated in the past decades due to the relevance of these monazites as potential ceramic phases for the immobilization of specific high level radioactive waste (HLW) streams [1-3]. In recent years, understanding the incorporation behaviour of trivalent dopants in the LnPO4×nH2O rhabdophane structure, which is the hydrated phosphate precursor in the synthesis of monazites through precipitation routes and a potential secondary mineral controlling actinide solubility in dissolution and re-precipitation reactions of monazite host-phases, has been given more attention [4,5]. Despite the large interest in lanthanide phosphates and the interaction of actinides with these solids, very little data is available on the complexation of lanthanides and actinides with aqueous phosphates, even though these complexation reactions precede any aqueous synthesis of monazite ceramics and are expected to occur in natural waters as well as in the proximity of monazite-containing HLW repositories. It also suffers from an almost systematic absence of independent spectroscopic validation of the stoichiometry of the proposed complexes. Both from the perspective of aqueous rhabdophane synthesis, which is often carried out at elevated temperatures, and heat-generating HLW immobilization in monazites, the lanthanide and actinide complexation reactions with aqueous phosphates under ambient conditions should be complemented with data obtained at higher temperatures.

In the present work, time-resolved laser fluorescence spectroscopy (TRLFS) has been employed to study the phosphate complexation of Eu3+ (5×10-6 M) and Cm3+ (5×10-7 M) as a function of total phosphate concentration (0-1 M ΣPO4) in the temperature regime 25-80°C, using NaClO4 as a background electrolyte. These studies have, in a first step, been conducted in the acidic pH-range (pH = 1) to avoid precipitation of solid Eu or Cm rhabdophane. Both trivalent metal cations form a complex with the anionic H2PO4- species, i.e. EuH2PO42+ and CmH2PO42+. As expected, the complexation reaction occurs at lower total phosphate concentration when increasing the temperature. In addition, our preliminary results show the presence of a second Eu-phosphate species which is tentatively assigned to Eu(H2PO4)2+. The presence of this species will be verified with mass-spectrometric methods.
Temperature-dependent complexation constants for the identified species will be derived from the recorded luminescence emission spectra. These will be recalculated to standard conditions with the van´t Hoff equation and the Specific Ion Interaction Theory. For this, the required ion interaction coefficients have been preliminary determined at 25 °C by varying the ionic strength (0.6 to 3 M).
  • Poster
    16th International Conference on Chemistry and Migration Behaviour of Actinides and Fission Products in the Geosphere, 10.-15.09.2017, Barcelona, Spain

Publ.-Id: 26329 - Permalink