Publications Repository - Helmholtz-Zentrum Dresden-Rossendorf

1 Publication
Critical dynamics of the Kuramoto model on sparse random networks
Juhász, R.; Kelling, J.; Ódor, G.;
We consider the Kuramoto model on sparse random networks such as the Erdős-Rényi graph or its combination with a regular two-dimensional lattice and study the dynamical scaling behavior of the model at the synchronization transition by large-scale, massively parallel numerical integration. By this method, we obtain an estimate of critical coupling strength more accurate than obtained earlier by finite-size scaling of the stationary order parameter. Our results confirm the compatibility of the correlation-size and the temporal correlation-length exponent with the mean-field universality class. However, the scaling of the order parameter exhibits corrections much stronger than those of the Kuramoto model with all-to-all coupling, making thereby an accurate estimate of the order-parameter exponent hard. We find furthermore that, as a qualitative difference to the model with all-to-all coupling, the effective critical exponents involving the order-parameter exponent, such as the effective decay exponent characterizing the critical desynchronization dynamics show a non-monotonic approach toward the asymptotic value. In the light of these results, the technique of finite-size scaling of limited size data for the Kuramoto model on sparse graphs has to be treated cautiously.
Keywords: Networks, Kuramoto Model, Synchronization

Publ.-Id: 28954 - Permalink