Publications Repository - Helmholtz-Zentrum Dresden-Rossendorf

1 Publication
SiCxNy:Fe films as a tunable ferromagnetic material with tailored conductivity
Pushkarev, R.; Fainer, N.; Kirienko, V.; Matsynin, A.; Nadolinnyy, V.; Merenkov, I.; Trubina, S.; Ehrenburg, S.; Kvashnina, K.;
Amorphous ferromagnetic materials with the variable composition are promising candidates for application in rapidlygrowing technological fields, such as spintronics. However, the significant downside of current state-of-art materials is a conductivity mismatch between injector and semiconductor which often is associated with the unavailability to control and precisely tailor magnetic properties and conductivity. We report on the synthesis of soft-magnetic SiCxNy:Fe films with the saturation magnetization of 20 e.m.u./cm3 and conductivity similar to the one of Si, which is crucial for possible applications.
XRD with synchrotron radiation and EXAFS revealed the complex composite structure of the films: crystals of Fe3Si, Fe5Si3, SiC and graphite are embedded into the amorphous matrix of SiCxNy. The variation of deposition conditions allowed us to separately control the magnetic properties through the iron concentration and the conductivity of the material through the amorphous SiCxNy matrix composition. The reported results revealed a significant potential of SiCxNy:Fe films as a prospective object for analysis of spin-polarized transport in amorphous semiconductors and for application in field of spintronics.

Downloads:

  • Secondary publication expected from 13.03.2020

Publ.-Id: 29011 - Permalink