Publications Repository - Helmholtz-Zentrum Dresden-Rossendorf

1 Publication
Indium thiospinel In1-xxIn2S4 – structural characterization and thermoelectric properties
Wyżga, P.; Veremchuk, I.; Himcinshi, C.; Burkhardt, U.; Carrillo-Cabrera, W.; Bobnar, M.; Hennig, C.; Leithe-Jasper, A.; Kortus, J.; Gumeniuk, R.;
A detailed study of polycrystalline indium-based In1-xxIn2S4 (x = 0.16, 0.22, 0.28, 0.33) thiospinel is presented. The comprehensive description of synthesis conditions, phase composition and thermoelectric properties is performed applying various diffraction, microscopic and spectroscopic methods. Single-phase α- and β-In1-xxIn2S4 were found in the samples with 0.16  x  0.22 and x = 0.33 (In2S3), respectively, while In0.720.28In2S4 is proven to contain both α- and β-polymorphic modifications. Consequently, thermoelectric characterization of well-defined α-and β-In1-xxIn2S4 is conducted for the first time. α-In1-xxIn2S4 (x = 0.16, 0.22 and 0.28) revealed n-type semiconducting behavior, large Seebeck coefficient (< - 200 μV∙K-1) and moderate charge carrier mobility on the level of ~ 20 cm2V-1s-1 at room temperature (RT). The evident decrease of charge carrier concentration (increase of electrical resistivity) and thermal conductivity (even below 0.6 W∙m-1K-1 at 760 K) for larger In-content is observed. Although β-In0.670.33In2S4 (β-In2S3) is a distinct polymorphic modification, it followed the above-mentioned trend in thermal conductivity and displayed significantly higher charge carrier mobility (~ 104 cm2V-1s-1 at RT). These findings indicate that structural disorder in α-modification affects both electronic and thermal properties in this thiospinel. The reduction of thermal conductivity counterbalances lowered power factor and thus, thermoelectric figure of merit ZTmax = 0.2 at 760 K is nearly the same for both α- and β-In1-xxIn2S4.
Keywords: In2S3, thermoelectric properties, thiospinel, Raman spectroscopy, transmission electron microscopy

Publ.-Id: 29105 - Permalink