Publications Repository - Helmholtz-Zentrum Dresden-Rossendorf

1 Publication
Maximizing magnetic field generation in high power laser–solid interactions
Huang, L. G.; Takabe, H.; Cowan, T. E.;
In order to understand the transport of fast electrons within solid density targets driven by an optical high power laser, wehave numerically investigated the dynamics and structure of strong self-generated magnetic fields in such experiments.Here we present a systematic study of the bulk magnetic field generation due to the ponderomotive current, Weibel-likeinstability and resistivity gradient between two solid layers. Using particle-in-cell simulations, we observe the effect ofvarying the laser and target parameters, including laser intensity, focal size, incident angle, preplasma scale length, targetthickness and material and experimental geometry. The simulation results suggest that the strongest magnetic field isgenerated with laser incident angles and preplasma scale lengths that maximize laser absorption efficiency. The recentcommissioning of experimental platforms equipped with both optical high power laser and X-ray free electron laser(XFEL), such as European XFEL-HED, LCLS-MEC and SACLA beamlines, provides unprecedented opportunities toprobe the self-generated bulk magnetic field by X-ray polarimetry via Faraday rotation with simultaneous high spatialand temporal resolution. We expect that this systematic numerical investigation will pave the way to design and optimizenear future experimental setups to probe the magnetic fields in such experimental platforms
Keywords: laser–plasmas interaction; high energy density physics; X-ray free electron laser probi

Downloads:

Publ.-Id: 29146 - Permalink