Publications Repository - Helmholtz-Zentrum Dresden-Rossendorf

1 Publication
Magnetic Orders and Origin of Exchange Bias in Co Clusters Embedded Oxide Nanocomposite Films
Li, H.; Wang, C.; Li, D.-Y.; Pereira, L. M. C.; Homm, P.; Menghini, M.; Locquet, J.-P.; Temst, K.; Vantomme, A.; van Haesendonck, C.; van Bael, M. J.; Ruan, S.; Zeng, Y.-J.;
Magnetic nanoparticles embedded oxide semiconductors are interesting candidates for spintronics in view of combining ferromagnetic (FM) and semiconducting properties. Co-ZnO and Co-V2O3 nanocomposite thin films are synthesized by Co ion implantation in crystalline thin films. Magnetic order varies with the implantation fluence in Co-ZnO, where the superparamagnetic (SPM) order appears in the low-fluence films (2×1016 and 4×1016 ions/cm2) while the FM order coexists with the SPM phase in high-fluence ones (1×1017 ions/cm2). The exchange bias (EB) effect is evident in high-fluence films, which gives an EB field of about 100 Oe at 2 K and a blocking temperature of around 100 K. In parallel, 3.5×1016 ions/cm2 Co-V2O3 hybrid thin film exhibits a clear antiferromagnetic (AFM) coupling at low temperature with a weak EB effect. The different magnetic behaviors in the two Co-implanted systems lead us to believe on one hand, that the observed EB effect in the Co-ZnO system is the result of the FM/AFM coupling between large Co nanoparticles and their CoO/Co3O4 surroundings in the (Zn,Co)O matrix. While, on the other hand, the EB effect in Co-V2O3 system originates from the interaction between FM Co nanoparticles and AFM V2O3 matrix. Detailed studies of magnetic orders as well as EB effect in magnetic nanocomposite semiconductors pave the way for their application in spintronics.
Keywords: nanocomposite, exchange bias, antiferromagnetic, superparamagnetic


Publ.-Id: 29176 - Permalink