Publications Repository - Helmholtz-Zentrum Dresden-Rossendorf

1 Publication
Advanced characterization methods for electrical and sensoric components and devices at the micro and nanoscale
Sheremet, E.ORC; Meszmer, P.ORC; Blaudeck, T.ORC; Hartmann, S.; Wagner, C.ORC; Ma, B.; Hermann, S.; Wunderle, B.; Schulz, S. E.; Hietschold, M.; Rodriguez, R. D.; Zahn, D. R. T.
This feature article covers the nano-analysis methods for four key material characteristics: electrical and electronic properties, optical, stress and strain, and chemical composition. With the downsizing of the geometrical dimensions of electronic, optoelectronic, and electromechanical devices from the micro to the nanoscale at the one hand and the increase of functionality density at the other, the previous generation of micro-analysis methods is no longer sufficient. Therefore, the metrology of materials’ properties with nanoscale resolution has become prerequisite in materials research and development. The article shortly reviews the standard analysis methods and focuses on advanced methods with a nanoscale spatial resolution based on atomic force microscopy (AFM): current-sensing AFM (CSAFM), Kelvin probe force microscopy (KPFM), and hybrid optical techniques coupled with AFM including tip-enhanced Raman spectroscopy (TERS), photothermal-induced resonance (PTIR) characterization methods (nano-Vis, nano-IR), photo-induced force microscopy (PIFM) and photothermal microspectroscopy (PTMS). The simultaneous acquisition of multiple parameters (topography, charge and conductivity, stress and strain, chemical composition) at the nanoscale is a key for exploring new research on structure-property relationships of nanostructured materials such as carbon nanotubes (CNTs) and nano/microelectromechanical systems (N/MEMS). Advanced nanocharacterization techniques foster the design and development of new functional materials for flexible hybrid and smart applications.
Keywords: Scanning probe microscopy, Kelvin probe force microscopy, nanoanalysis, Raman spectroscopy, atomic force microscopy

Publ.-Id: 29345 - Permalink