Publications Repository - Helmholtz-Zentrum Dresden-Rossendorf

2 Publications
Haemodynamic impairments in asymptomatic unilateral carotid artery stenosis are most pronounced within individual watershed areas
Kaczmar, S.; Goettler, J.; Petr, J.; Hansen, M.; Kufer, J.; Hock, A.; Kufer, J.; Mouridsen, K.; Hyder, F.; Christine, P.;
Objectives
Severe internal carotid-artery stenosis (ICAS) is a major public health issue, as it accounts for approximately 10% of all strokes.1 Despite several studies,2–5 mechanisms of related haemodynamic impairments are still not well understood, which limits the currently insufficient treatment guidelines6. To improve diagnostic significance, we propose a multimodal-MRI protocol to better characterise haemodynamic impairments in asymptomatic ICAS. Since perfusion impairments arise first in the highly variableborder zones7 between perfusion territories,8 we hypothesize to be most sensitive to ICAS-impairments within subject’s individual watershed areas (iWSAs)7.

Methods
Fifty-nine participants (29 asymptomatic, unilateral ICAS-patients, age = 70.1 ± 4.8y and 30 age-matched HC, age = 70.3 ± 7.3y) underwent MRI on a Philips 3T Ingenia with written informed consent. Imaging yielded maps of cerebrovascular reactivity (CVR)9 by breathhold-fMRI;10 cerebral blood flow (CBF) by pCASL;11 relative oxygen extraction fraction (rOEF) by multiparametric-quantitative BOLD (mq-BOLD);12 relative cerebral blood volume (rCBV), capillary transit-time heterogeneity (CTH), and oxygen extraction capacity (OEC) by parametric modeling13 of dynamic susceptibility contrast (DSC) data14 (Fig.1C-H). Based on DSC-derived time-to-peak (TTP) maps, iWSAs were defined for each participant (Fig.1A).7 Mean haemodynamic parameter values within each hemisphere were compared between ICAS-patients vs. HC and inside vs. outside iWSAs (Fig.1B) within GM and WM.

Results
We found statistically significant lateralisation of CBF, CVR, rCBV, CTH and OEC for ICAS-patients, whereas no significant rOEF lateralisation was found (Fig.1I). Inside iWSAs, lateralisation was significantly enhanced for CBF and CVR (t-test, p < 0.05), with a strong trend for rCBV. Overall, lateralisation was stronger within WM than GM (Fig.1I). Contrary, OEC and CTH were indeed lateralised, but comparable inside vs. outside iWSAs (Fig.1I). For HC, all parameters were symmetrical between hemispheres (data not shown).



Discussion
The multimodal MRI-protocol is sensitive to haemodynamic impairments in unilateral-ICAS. Specificity was affirmed by symmetrical HC results. As hypothesized, impairments of CBF, CVR and rCBV were stronger within iWSAs (Fig.1I). Pronounced effects in WM-iWSA fit with the different blood supply in GM/WM. Ipsilaterally decreased CBF agrees with recent studies.2 Decreased CVR, along with increased rCBV, indicates chronic vasodilation.15 Consistent with current literature,2 no rOEF lateralisation was found on group level. Observed ΔCBF vs. ΔrOEF mismatch could imply variable oxygen diffusivity16– potentially moderated by CTH17,18. Increased CTH in ICAS agrees with previous studies.18 Interestingly, we found CTH and OEC lateralisation independent of iWSA-locations, which coincides with previous CTH and Tmax comparisons.19,20 This indicates different CTH and TTP sensitivities to macrovascular effects and microcapillary flow heterogeneity.18

Conclusion
We successfully analyzed haemodynamic impairments in unilateral-ICAS and found lateralisation in accordance with current literature. Application of iWSA confirmed increased sensitivity to CBF, CVR and rCBV changes. Interestingly, CTH and OEC increases are independent of iWSA-locations.
  • Contribution to proceedings
    The 29th International Symposium on Cerebral Blood Flow, Metabolism and Function, 04.07.2019, Yokohama, Japan
  • Lecture (Conference)
    The 29th International Symposium on Cerebral Blood Flow, Metabolism and Function, 04.07.2019, Yokohama, Japan

Publ.-Id: 29522 - Permalink