Publications Repository - Helmholtz-Zentrum Dresden-Rossendorf

1 Publication
Photodecarbonylation and in vitro studies of dicarbonyl ruthenium complexes
Kubeil, M.ORC; Geri, S.; Stephan, H.
Carbon monoxide has been demonstrated to exhibit several beneficial effects on biological targets (anti-inflammatory, anti-proliferative, anti-apoptotic effects, causes vasodilation, etc.).[1] Consequently, the development of CO releasing molecules (CORMs) that allows a controlled release of CO under physiological conditions has therefore become a major field of scientific and medical interest.[2] Considerable research interest has been drawn on light-activated CORMs (photoCORMs) which only release CO upon radiation with certain wavelengths. However, despite a large number of photoCORMs reported, relatively little information is available on the precise mechanism of CO release from most photoCORMs and even less compounds have been tested as anti-cancer agents in cells so far. Herein, we report the synthesis of ruthenium(II) carbonyl complexes functionalized with (fluorescent) bidentate pyridyl (1) and tridentate diquinolyl ligands (2) and investigate the mechanism of CO release in aqueous media (before and after light-activation). The photo-induced CO release kinetics of the Ru(II) photoCORMs, as well as in vitro studies in cancerous and healthy cell lines will be presented [3].

References
[1] R. Motterlini, L. E. Otterbein, Nat. Rev. Drug Discov. 9 (2010) 728-743.
[2] U. Schatzschneider, Br. J. Pharmacol. 172 (2015) 1638-1650.
[3] M. Kubeil, R. R. Vernooij, C. Kubeil, B. R. Wood, B. Graham, H. Stephan, L. Spiccia, Inorg. Chem.
56 (2017) 5941-5952.
[4] M. Kubeil, T. Joshi, B. R. Wood, H. Stephan, ChemistryOpen (2019) accepted.
  • Lecture (Conference)
    19th International Conference on Biological Inorganic Chemistry, 11.-16.08.2019, Interlaken, Schweiz

Publ.-Id: 29597 - Permalink