Publications Repository - Helmholtz-Zentrum Dresden-Rossendorf

1 Publication

Comparison of Si and Ge surface patterns produced by ion irradiation in the reverse epitaxy regime

Facsko, S.ORC; Xin, O.; de Schultz, R.; Erb, D.
In addition to sputtering, ion irradiation is often also leading to restructuring of the surface and a plethora of surface patterns can appear. At irradiation temperatures high enough to dynamically anneal defects induced by the collision cascades the surface remains crystalline. Still, a high density of ion-induced surface vacancies and adatoms remains and their diffusion is affected by the Ehrlich-Schwoebel (ES) barrier, i.e. an additional diffusion barrier to cross terrace steps. These defects are therefore trapped on terraces, nucleate and form pits or mounds [1]. In this way three dimensional, faceted nanostructures are formed, reflecting the underlying crystal lattice. Due to the similarity to growth of three-dimensional structures in molecular beam epitaxy this mechanism is called reverse epitaxy.
We will present patterns on Si and Ge surface induced by low energy, normal incidence, high fluence ion irradiation at temperatures above the recrystallization temperature. Patterns with very different symmetry can result, depending on the surface orientation: pyramidal structures with four-fold symmetry on the (001) surface, with three-fold and six-fold symmetry on the (111) surface and elongated structures with two-fold symmetry on the (011) surface [2].
Although Si and Ge have the same diamond crystal lattice, the resulting patterns and facets are different: on Ge(001) predominantly (105) facets are formed, whereas (115) facets are found on Si(001). Similarly, on Si(111) the pattern exhibits a six-fold symmetry with (123) facets, whereas on Ge(111) the patterns are formed by (356) facets and exhibit a three-fold symmetry. The formation mechanism and possible effects leading to these differences on Ge and Si surfaces will be presented and discussed.
Keywords: ion beams, nanopatterning, ion-surface interaction
  • Lecture (Conference)
    10th International Workshop on Nanoscale Pattern Formation at Surfaces (NanoPatterning 2019), 07.-10.07.2019, Surrey, England

Publ.-Id: 30560