Publications Repository - Helmholtz-Zentrum Dresden-Rossendorf

2 Publications

Lead Metallurgy is Fundamental to the Circular Economy Policy Brief SOCRATES EU MSCA-ETN

Reuter, M.ORC; Malfliet, A.; Blanpain, B.
Metals are eminently recyclable, and by recycling and refining complex materials, the EU's interconnected metals sector is responding to the increasing scarcity of certain metals. In this way, we are delivering and recovering the technology and base metals for the EU's Circular Economy (CE). Moreover, metals are at the heart of the energy infrastructures that now run Circular Cities, and they will play an even greater part in the future. One of these metals is lead. With respect to this familiar metal, industry is fully aware that in order to keep on using it, the associated risks need to be well managed at all times. Importantly, lead is a key enabler in the CE, as it is capable of dissolving and carrying a multitude of technology elements. The recovery and recycling of several critical technology elements is based on refining them from lead through well-developed metallurgical processes in which the lead acts as a carrier metal. Limiting lead metallurgy would have a detrimental impact, not only on the lead industry itself, but on all the industries linked to it. It is therefore critical that we maintain and further develop the lead infrastructure and know-how in Europe. To put it simply, lead metallurgy is fundamental if the EU wants to retain its leading position in the global CE. Executive Summary the 5 lessons learned: • Lesson 1: Lead is frequently seen as a problematic metal that can be detrimental to human health; what is much less well known is its fundamental role in extrac-tive metallurgy and how this is closely associated with the Circular Economy. • Lesson 2: Molten lead has unique properties that means it can act as an efficient liquid carrier for critical raw materials such as In, Bi, Cd and Te. • Lesson 3: Restricting lead metallurgy in the EU would not only have a detrimental impact on the lead industry, but also on all the industries linked to it that work with elements like Ag, Cu, Sb, Sn, Te, and Zn. • Lesson 4: The focus must be on correctly and comprehensively minimising the risks of lead-containing materials for society and carefully managing them, rather than attempting to ban the use of lead. • Lesson 5: An environmentally friendly and energy-efficient lead infrastructure together with the associated research and know-how in Europe is absolutely vital if the continent is to maintain its global leadership in the Circular Economy.
Keywords: recyclable, recycling, EU's Circular Economy, CE, Circular Cities, lead, research
Related publications
Metallurgy is fundamental to the Circular Economy (Id 30589) has this publication as part
  • Other report
    ---: ETN Socrates, 2019
  • Lecture (Conference)
    Fifth SOCRATES network-wide event, 19.-21.02.2019, Leicester, England

Publ.-Id: 30586