Publications Repository - Helmholtz-Zentrum Dresden-Rossendorf

1 Publication

Development of a radiofluorinated adenosine A2B receptor antagonist as potential ligand for PET imaging

Lindemann, M.; Moldovan, R.-P.; Hinz, S.; Deuther-Conrad, W.; Gündel, D.; Dukic-Stefanovic, S.; Toussaint, M.; Teodoro, R.; Juhl, C.; Steinbach, J.; Brust, P.; Müller, C. E.; Wenzel, B.
The adenosine A2B receptor has been proposed as a novel therapeutic target in cancer, as for example, its expression is drastically elevated in several tumors and cancer cells. Noninvasive molecular imaging by using positron emission tomography (PET) would allow the in vivo quantification of this receptor in pathological processes and most likely enable the identification and clinical monitoring of respective cancer therapies. On the basis of a bicyclic pyridopyrimidine-2,4-dione core structure, the new adenosine A2B receptor ligand 9 was synthesized containing a 2-fluoropyridine moiety suitable for labeling with the short-lived PET radionuclide fluorine-18. Compound 9 showed a high binding affinity for the human A2B receptor (Ki(A2B) = 2.51 nM) along with high selectivities versus the A1, A2A, and A3 receptor subtypes. Therefore, it was radiofluorinated via nucleophilic aromatic substitution of the corresponding nitro precursor using [18F]F-/K2.2.2./K2CO3 in DMSO at 120 °C. Metabolism studies of [18F]9 in mice revealed about 60 % of intact radiotracer in plasma at 30 minutes p.i. A preliminary PET study in healthy mice showed an overall biodistribution of [18F]9 corresponding to the known ubiquitous but low expression of the A2B receptor. Consequently, [18F]9 represents a novel PET radiotracer with high affinity and selectivity toward the adenosine A2B receptor and a suitable in vivo profile. Subsequent studies are envisaged to investigate the applicability of [18F]9 to detect alterations in the receptor density in certain cancer-related disease models.
Keywords: A2B receptor; adenosine, PET; fluorine-18; metabolism; radiofluorination;

Downloads:

  • available with HZDR-Login

Permalink: https://www.hzdr.de/publications/Publ-30865
Publ.-Id: 30865