Publications Repository - Helmholtz-Zentrum Dresden-Rossendorf

1 Publication

Chemical manipulation of hydrogen induced high p-type and n-type conductivity in Ga₂O₃

Islam, M. M.; Liedke, M. O.; Winarski, D.; Butterling, M.; Wagner, A.; Hosemann, P.; Wang, Y.; Uberuaga, B. P.; Selim, F. A.
Advancement of optoelectronic and high-power devices is tied to the development of wide band gap materials with excellent transport properties. However, bipolar doping (n-type and p-type doping) and realizing high carrier density while maintaining good mobility have been big challenges in wide band gap materials. Here P-type and n-type conductivity was introduced in β-Ga₂O₃, an ultra-wide band gap oxide, by controlling hydrogen incorporation in the lattice without further doping. Hydrogen induced a 9-order of magnitude increase of n-type conductivity with donor ionization energy of 20 meV and resistivity of 10⁻⁴ Ωcm. The conductivity was switched to p-type with acceptor ionization energy of 42 meV by altering hydrogen incorporation in the lattice. Density functional theory calculations were used to examine hydrogen location in the Ga₂O₃ lattice and identified a new donor type as the source of this remarkable n-type conductivity. Positron annihilation spectroscopy measurements confirm this finding and the interpretation of the experimental results. This work illustrates a new approach that allows a tunable and reversible way of modifying the conductivity of semiconductors and it is expected to have profound implications on semiconductor field. At the same time, it demonstrates for the first time p-type and remarkable n-type conductivity in Ga₂O₃ which should usher in the development of Ga₂O₃ devices and advance optoelectronics and high-power devices.
Keywords: optoelectronics high-power wide band gap transport bipolar doping β-Ga₂O₃ semiconductors

Downloads:

  • available with HZDR-Login

Permalink: https://www.hzdr.de/publications/Publ-30907
Publ.-Id: 30907