Publications Repository - Helmholtz-Zentrum Dresden-Rossendorf

1 Publication

Visualizing Magnetic Structure in 3D Nanoscale Ni–Fe Gyroid Networks

Llandro, J.; Love, D. M.; Kovács, A.; Caron, J.; Vyas, K. N.; Kakay, A.; Salikhov, R.; Lenz, K.; Faßbender, J.; Scherer, M. R. J.; Cimorra, C.; Steiner, U.; Barnes, C. H. W.; Dunin-Borkowski, R. E.; Fukami, S.; Ohno, H.
Arrays of interacting 2D nanomagnets display unprecedented electromagnetic properties via collective effects, demonstrated in artificial spin ices and magnonic crystals. Progress toward 3D magnetic metamaterials is hampered by two challenges: fabricating 3D structures near intrinsic magnetic length scales (sub-100 nm) and visualizing their magnetic configurations. Here, we fabricate and measure nanoscale magnetic gyroids, periodic chiral networks comprising nanowire-like struts forming three-connected vertices. Via block copolymer templating, we produce Ni75Fe25 single-gyroid and double-gyroid (an inversion pair of single-gyroids) nanostructures with a 42 nm unit cell and 11 nm diameter struts, comparable to the exchange length in Ni–Fe. We visualize their magnetization distributions via off-axis electron holography with nanometer spatial resolution and interpret the patterns using finite-element micromagnetic simulations. Our results suggest an intricate, frustrated remanent state which is ferromagnetic but without a unique equilibrium configuration, opening new possibilities for collective phenomena in magnetism, including 3D magnonic crystals and unconventional computing.
Keywords: magnetic metamaterials gyroids transmission electron microscopy off-axis electron holography


  • available with HZDR-Login

Publ.-Id: 31026