Publications Repository - Helmholtz-Zentrum Dresden-Rossendorf

1 Publication

Point and extended defects in heteroepitaxial β-Ga2O3 films

Saadatkia, P.; Agarwal, S.; Hernandez, A.; Reed, E.; Brackenbury, I. D.; Codding, C. L.; Liedke, M. O.; Butterling, M.; Wagner, A.; Selim, F. A.

Ga2O3 is emerging as an excellent potential semiconductor for high power and optoelectronic devices.
However, the successful development of Ga2O3 in a wide range of applications requires a full understanding of the role and nature of its point and extended defects. In this work, high quality epitaxial Ga2O3 films were grown on sapphire substrates by metal-organic chemical vapor deposition and fully characterized in terms of structural, optical, and electrical properties. Then defects in the films were investigated by a combination of depth-resolved Doppler broadening and lifetime of positron annihilation spectroscopies and thermally stimulated emission (TSE). Positron annihilation techniques can provide information about the nature and concentration of defects in the films, while TSE reveals the energy level of defects in the bandgap. Despite very good structural properties, the films exhibit short positron diffusion length, which is an indication of high defect density and long positron lifetime, a sign for the formation of Ga vacancy related defects and large vacancy clusters. These defects act as deep and shallow traps for charge carriers as revealed from TSE, which explains the reason behind the difficulty of developing conductive Ga2O3 films on non-native substrates. Positron lifetime measurements also show nonuniform distribution of vacancy clusters throughout the film depth. Further, the work investigates the modification of defect nature and properties through thermal treatment in various environments. It demonstrates the sensitivity of Ga2O3 microstructures to the growth and thermal treatment environments and the significant effect of modifying defect structure on the bandgap and optical and electrical properties of Ga2O3

Keywords: positron annihilation spectroscopy; positron annihilation lifetime spectroscopy; Doppler broadening; defetcs; Ga2O3

Downloads:

Permalink: https://www.hzdr.de/publications/Publ-31609
Publ.-Id: 31609


×