Publications Repository - Helmholtz-Zentrum Dresden-Rossendorf

1 Publication

Texture-Aware Total Variation-Based Sun Glint Removal of Hyperspectral Images

Duan, P.; Lai, J.; Kang, J.; Kang, X.; Ghamisi, Pedram; Li, S.

Sun glint in hyperspectral images (HSIs) leads to undesirable spectral interference, which severely affects subsequent image interpretation, such as environmental monitoring of coastal areas. Sun glint removal methods aim to recover a high quality image without sun glint from the original image. Most methods depend on an assumption that the near infrared band is strongly absorbed by water. However, this assumption is not always reliable because the infrared radiation in shallow or turbid water can be reflected back by the seabed or sediment, rather than being fully absorbed. Therefore, the reflected infrared radiation still contains sun glint and these methods cannot sufficiently remove sun glint from HSIs. To address this problem, a texture-aware total variation (TATV)-based method is proposed to remove sun glint from HSIs. The original HSI first is formulated as a desired clean image and a sun glint image. Then, in order to remove the sun glint, we propose a variational model where the different spectral characteristics of sun glint and other surrounding materials are considered. Specifically, we propose a texture-aware total variation regularized method to heavily penalize the variation of the sun glint areas. Experiments performed on simulated and real data sets demonstrate that our method can greatly outperform other state-of-the-art methods in removing sun glint.

  • ISPRS Journal of Photogrammetry and Remote Sensing 166(2020), 10.1016/j.isprsjprs.2020.06.009


  • Secondary publication expected from 08.07.2021

Publ.-Id: 31967