Publications Repository - Helmholtz-Zentrum Dresden-Rossendorf

1 Publication

Flexible highly compliant magnetoelectronics

Canon Bermudez, G. S.; Ge, J.; Faßbender, J.; Kaltenbrunner, M.; Makarov, D.

Mechanical flexibility and even stretchability of functional elements is a key enabler of numerous applications including wearable electronics, healthcare and medical appliances. The magnetism community developed the family of high-performance shapeable magnetoelectronics [1], which contain flexible [2-4], printable [5-7], stretchable [8-11] and even mechanically imperceptible [12-16] magnetic field sensorics. The technology relies on a smart combination of thin inorganic functional elements prepared directly on flexible or elastomeric supports. The concept of shapeable magnetoelectronics is explored for various applications ranging from automotive [17] through consumer electronics and point of care [2,18] to virtual and augmented reality [14-16] applications.
Here, we will focus on the use of compliant magnetosensitive skins [14-16] for augmented reality systems. We demonstrate that e-skin compasses [14] allow humans to orient with respect to earth’s magnetic field ubiquitously. The biomagnetic orientation enables the realization of a touchless control of virtual units in a game engine using omnidirectional magnetosensitive skins (Fig. 1).
This concept was further extended by demonstrating a compliant magnetic microelectromechanical platform (m-MEMS), which is able to transduce both tactile (via mechanical pressure) and touchless (via magnetic field) stimulations simultaneously and discriminate them in real time [16] (Fig. 2). We demonstrate data selection and manipulation with our m-MEMS e-skins leading to the realization of a multi-choice menu for augmented reality through three dimensional (3D) touch. Beyond the field of augmented reality, our m-MEMS will bring great benefits for healthcare, e.g. to ease surgery operations and manipulation of medical equipment, as well as for humanoid robots to overcome the challenging task of grasping.
[1] D. Makarov et al., Appl. Phys. Rev. (Review) 3, 011101 (2016).
[2] G. Lin, D. Makarov et al., Lab Chip 14, 4050 (2014).
[3] N. Münzenrieder, D. Makarov et al., Adv. Electron. Mater. 2, 1600188 (2016).
[4] M. Melzer, D. Makarov et al., Adv. Mater. 27, 1274 (2015).
[5] D. Makarov et al., ChemPhysChem (Review) 14, 1771 (2013).
[6] D. Karnaushenko, D. Makarov et al., Adv. Mater. 24, 4518 (2012).
[7] D. Karnaushenko, D. Makarov et al., Adv. Mater. 27, 880 (2015).
[8] M. Melzer, D. Makarov et al., J. Phys. D: Appl. Phys. (Review) 53, 083002 (2020).
[9] M. Melzer, D. Makarov et al., Nano Lett. 11, 2522 (2011).
[10] M. Melzer, D. Makarov et al., Adv. Mater. 24, 6468 (2012).
[11] M. Melzer, D. Makarov et al., Adv. Mater. 27, 1333 (2015).
[12] M. Melzer, D. Makarov et al., Nat. Commun. 6, 6080 (2015).
[13] P. N. Granell, D. Makarov et al., npj Flexible Electronics 3, 3 (2019).
[14] G. S. Cañón Bermúdez, D. Makarov et al., Nature Electronics 1, 589 (2018).
[15] G. S. Cañón Bermúdez, D. Makarov et al., Science Advances 4, eaao2623 (2018).
[16] J. Ge, D. Makarov et al., Nature Communications 10, 4405 (2019).
[17] M. Melzer, D. Makarov et al., Adv. Mater. 27, 1274 (2015).
[18] G. Lin, D. Makarov et al., Lab Chip (Review) 17, 1884 (2017).

Keywords: flexible electronics; shapeable magnetoelectronics

  • Lecture (Conference) (Online presentation)
    65th Annual Conference on Magnetism and Magnetic Materials, 03.11.2020, Palm Beach, USA

Permalink: https://www.hzdr.de/publications/Publ-32021
Publ.-Id: 32021


×