Publications Repository - Helmholtz-Zentrum Dresden-Rossendorf

1 Publication

Robust Magnetoelectric Effect in Decorated Graphene/In2Se3 Heterostructure

Shang, J.; Tang, X.; Gu, Y.; Krasheninnikov, A.; Picozzi, S.; Chen, C.; Kou, L.

The magnetoelectric effect is a fundamental physical phenomenon that synergizes electric and magnetic degrees of freedom to generate distinct material responses like electrically tuned magnetism, which serves as a key foundation of the emerging field of spintronics. Here, we show by first-principles studies that ferroelectric (FE) polarization of an In2Se3 monolayer can modulate the magnetism of an adjacent transition-metal (TM)-decorated graphene layer via a ferroelectrically induced electronic transition. The TM nonbonding d-orbital shifts downward and hybridizes with carbon-p states near the Fermi level, suppressing the magnetic moment, under one FE polarization, but on reversed FE polarization this TM d-orbital moves upward, restoring the original magnetic moment. This finding of robust magnetoelectric effect in the TM-decorated graphene/In2Se3 heterostructure offers powerful insights and a promising avenue for experimental exploration of ferroelectrically controlled magnetism in two-dimensional (2D) materials.

Keywords: 2D materials; First-principles calculations


  • Secondary publication expected from 05.01.2022

Publ.-Id: 32421