Publications Repository - Helmholtz-Zentrum Dresden-Rossendorf

2 Publications

MoP3SiO11: A 4d3 honeycomb antiferromagnet with disconnected octahedra

Badrtdinov, D. I.; Ding, L.; Ritter, C.; Hembacher, J.; Ahmed, N.; Scurschii, I.; Tsirlin, A. A.

We report the crystal structure and magnetic behavior of the 4d3 spin-3/2 silicophosphate MoP3SiO11 studied by high-resolution synchrotron x-ray diffraction, neutron diffraction, thermodynamic measurements, and ab initio band-structure calculations. Our data revise the crystallographic symmetry of this compound and establish its rhombohedral space group (R¯3c) along with the geometrically perfect honeycomb lattice of the Mo3+ ions residing in disconnected MoO6 octahedra. Long-range antiferromagnetic order with the propagation vector k = 0 observed below TN = 6.8 K is a combined effect of the nearest-neighbor in-plane exchange coupling J ≃ 2.6 K, easy-plane single-ion anisotropy D ≃ 2.2 K, and a weak interlayer coupling Jc ≃ 0.8 K. The 12% reduction in the ordered magnetic moment of the Mo3+ ions and the magnon gap of Δ ≃ 7 K induced by the single-ion anisotropy further illustrate the impact of spin-orbit coupling on the magnetism. Our analysis puts forward single-ion anisotropy as an important ingredient of 4d3 honeycomb antiferromagnets despite their nominally quenched orbital moment.

Publ.-Id: 33215