Publications Repository - Helmholtz-Zentrum Dresden-Rossendorf

1 Publication

The effect of magnetic fields on freckle evolution during solidification

Shevchenko, N.; Kao, A.; Fan, X.; Tonry, C.; Clark, S.; Atwood, R.; Lee, P.; Pericleous, K.; Eckert, S.

The formation of freckle defects in the presence of a static magnetic field is studied by combining in-situ synchrotron imaging with numerical simulations. The formation, growth and motion of freckle channels during directional solidification are investigated in a Hele-Shaw cell for a low melting point Ga-In alloy. The solidification setup is developed at HZDR and is described in detail elsewhere. The solidification cell is placed in a permanent magnet system providing a flux density of about 120 mT within the cell. The turn of the magnet system about a vertical cell axis allow to get both the Bx (perpendicular to a X-ray beam) and the Bz (parallel to a X-ray beam) component of the magnetic field.
Numerical simulations, using a microscopic parallelized Cellular Automata lattice Boltzmann method, are validated by these in situ experiments. An excellent match between the numerical model and experiments conducted on thin rectangle sample alloy is achieved. Evaluation of the in situ X-ray data and numerical analysis shows the role of thermoelectric magnetohydrodynamics (TEMHD) and electromagnetic damping (EMD) in the formation of channels and ultimately freckle defects. For instance, Figures 1c and 1d show clear evidence of the effect of the magnetic field on the microstructure. Figure 1d displays the formation of a solute channel at the left side of the sample in the presence of a magnetic field. This channel development can be attributed to the thermoelectric Lorentz force acting on the inter-dendritic liquid flow by causing the solute to accumulate at one side of the cell.
In situ synchrotron experiments allow us to resolve the complex channel dynamics and simultaneously show how large-scale flow fields may alter them. Both temperature gradient and grain orientation can affect the dynamics of the segregation channels formation in the presence of the magnetic field. The effect of electromagnetic damping force to convective transport needs future investigations. The in situ synchrotron data and numerical modelling will provide further understanding of the underlying mechanisms and identifying further interesting phenomena.

Keywords: solidification; magnetic fields; freckle defects; in-situ synchrotron imaging; numerical modelling

  • Lecture (Conference) (Online presentation)
    Electromagnetic Processing of Materials, EPM 2021, 14.-16.06.2021, Riga, Latvia

Publ.-Id: 33932