Publications Repository - Helmholtz-Zentrum Dresden-Rossendorf

1 Publication

Ion-electron dynamics studied in a 3D-transmission approach

Lohmann, S.; Holeňák, R.; Grande, P. L.; Primetzhofer, D.

We present experiments demonstrating trajectory-dependent electronic excitations at low ion velocities attributed to charge-exchange events. Experiments were performed with the time-of-flight medium energy ion scattering set-up at Uppsala University [1]. We employed pulsed beams of singly charged ions with masses from 1 (H+) to 40 u (Ar+) and energies between 20 and 300 keV. Ions are transmitted through self-supporting Si(100) nanomembranes and detected behind the sample. Fig. 1 demonstrates our experimental approach, in which ion energy loss is measured together with angular distributions for different beam-crystal alignments. We have analysed both trajectory-dependent electronic stopping and electronic energy-loss straggling. Our results show higher electronic stopping for random than for channelled trajectories for all studied ions [2]. For ions heavier than protons, direct core-electron excitations at employed ion velocities are inefficient. We, therefore, explain our observation by reionisation events occurring in close collisions of ions with target atoms mainly accessible in random geometry [3]. These events result in trajectory-dependent mean charge states, which heavily affects the energy loss. The electronic energy-loss straggling likewise exhibits a strong dependence on ion type, velocity and trajectory. For all ions, straggling in random geometry is higher than in channelling orientation. While for He straggling increases with ion velocity, for B travelling along random trajectories a minimum is observed in the studied velocity range. We compare experimental results for these two ions with predictions by the Chu model and transport cross section calculations (Penn-TCS model). We provide strong evidence that electron-hole pair creation alone cannot explain electronic excitations by slow ions other than protons. Especially for heavy ions, additional energy-loss processes such as charge exchange and autoionisation including possible alterations of the scattering potential [4] have to be taken into account.
[1] M. A. Sortica et al., Nucl. Instrum. Methods Phys. Res. B, 463 (2020) 16-20.
[2] S. Lohmann et al., Phys. Rev. A, 102 (2020) 062803.
[3] S. Lohmann and D. Primetzhofer, Phys. Rev. Lett., 124, (2020) 096601.
[4] R. A. Wilhelm and P. L. Grande, Communications Physics, 2 (2019) 89.

  • Invited lecture (Conferences) (Online presentation)
    27th International Symposium on Ion-Atom Collisions (ISIAC), 14.-16.07.2021, Online, Online

Publ.-Id: 33960