Publications Repository - Helmholtz-Zentrum Dresden-Rossendorf

2 Publications
Enhanced local void and temperature measurements for high-transient two-phase flows
Schleicher, E.; Da Silva, M. J.; Hampel, U.;
Local void fractions measurements in two-phase flow phenomena are commonly carried out by the use of needle probes. The measuring principle of these probes is based on conductivity or optical measurements. In the past advanced needle probes with integrated micro-thermocouples have been introduced by Prasser et al., making possible to measure local temperatures at the same position where the void fractions are determined because the sheath of the micro-thermocouple serves as the measuring electrode for the conductivity measurement. Thereby - in principle - the temperatures of the two different phases (e. g. steam and water) can be distinguished. The big disadvantage of this technique is the relative long time constant (~20 ms) of mineral-insulated sheathed thermocouples. The usage of this type of thermocouples was necessary because the electronic was not able to separate the two signals (temperature and conductivity) from each other. Measuring of high-transient two phase flows were impossible due to the slow time response. Additionally the two signals had to be sampled sequentially because of influence of the rectangular excitation signal into the small temperature voltage. Investigations of temperature changing in the interfacial area between gas and liquid were therefore very difficult. To solve this problem we have developed a new combined temperature and conductivity needle probe measuring system, which is able to handle grounded or direct sheathed thermocouples (where the thermocouple wires are electrically-joined to the protective sheath) as well as open thermocouples (exposed junction).
Keywords: needle probe, temperature measurement, two-phase flows, micro-thermocouple
  • Contribution to proceedings
    23rd IEEE Instrumentation and Measurement Technology Conference, 24.-27.04.2006, Sorrento, Italy
    Proceedings, Piscataway, NJ 08855-1331 USA: IEEE, 0-7803-9360-0, 596-599
  • Poster
    IEEE Instrumentation and Measurement Technology Conference, 24.-27.04.2006, Sorrento, Italy

Permalink: https://www.hzdr.de/publications/Publ-8208
Publ.-Id: 8208