Publications Repository - Helmholtz-Zentrum Dresden-Rossendorf

Production of 61Cu via the 64Zn(p,α)61Cu reaction with high specific activity

Thieme, S.; Walther, M.; Rajander, J.; Pietzsch, H.-J.; Solin, O.; Steinbach, J.


Optimized production and separation parameters, use of only ultra-pure reagents with ppt-levels of metal traces are necessary for the production of high specific activities (SA) 61Cu. From previous studies regarding production of 61Cu there is little data on SA published. McCarthy et al. [1] measured SA ranging from 47 to 190 GBq/µmol for 61Cu produced via 61Ni(p,n)61Cu and 60Ni(d,n)61Cu reaction. An alternative method for production is the use of the 64Zn(p,α)61Cu reaction [2]. The use of 99% enriched 64Zn is considerably cheaper than use of enriched 61Ni.
A target setup was developed using approximately 100 mg enriched 64Zn electroplated on a massive gold disk for proton irradiation. The radiochemical separation technique included recycling of the target material and was based on ion exchange methods described in the literature [3-8]. It consisted of a system of cation and anion exchange columns. This ion exchanger cascade included a twofold cation exchange step developed for effective removal of gallium by-products (66/67/68Ga) and one anion exchange step to separate 61Cu from the target material. This separation procedure took one hour. After the recycling procedure for the target material a new electrodeposition of the 64Zn could be carried out. The method used small ion exchange columns, aqueous hydrochloric acid solutions and is described in detail by Thieme et al. [2]. The SA was evaluated by TETA binding assay with radio TLC. Two different cyclotrons were used for the irradiations: a Cyclone 18/9 (IBA, Belgium) at the Insitute of Radiopharmacy in Dresden-Rossendorf with a home-made solid target holder and a CC 18/9 (Efremov Institute, St. Petersburg, Russia) at Turku PET Centre in Turku also with a home-made solid target holder.
With the Cyclone 18/9 the irradiations were performed with 12 µA of 16 MeV protons on target for 30 min and yielded about 300 MBq 61Cu at EOB. The CC 18/9 irradiations with 30 µA of 13 MeV protons on target for 30 min yielded 330-400 MBq 61Cu, and with 3 hours 1150 MBq 61Cu, respectively. SA of 500 GBq/µmol were achieved with the CC 18/9 which is equipped with a solid target holder completely made of aluminum preventing contamination of the target disk with non-radioactive copper. Compared to the low specific activities, less than 1 GBq/µmol was achieved at the Cyclone 18/9. This low SA is most likely caused by contamination with non-radioactive copper from the currently used solid target holder containing brass/copper parts.
These results show the possibility to produce high SA 61Cu (SA up to 500 GBq/µmol) via the 64Zn(p,α)61Cu reaction at low proton energies. Together with the used radiochemical separation method it is possible to produce high quality 61Cu routinely.

  • Poster
    19th International Symposium on Radiopharmaceutical Scieneces (ISRS), 28.08.-02.09.2011, Amsterdam, Niederlande
  • Abstract in refereed journal
    Journal of Labelled Compounds and Radiopharmaceuticals 54(2011), S237
    ISSN: 0362-4803

Publ.-Id: 16202