Response of human mesenchymal stem cells to nanopatterned surfaces

Response of human mesenchymal stem cells to nanopatterned surfaces

Keller, A.; Andersen, O. Z.; Foss, M.; Facsko, S.; Kraft, D. C.; Besenbacher, F.

Artificial biomaterials play an important role in bioengineering, e.g. in regenerative medicine, biosensing, and orthopedics. The success of orthopedic implants depends on early bone formation and strong binding between bone and implant. The ability of osteogenic cells to adhere, proliferate, and differentiate on the implant surface is thus crucial for the formation of new bone tissue and the subsequent osseointegration of the implant.
Bone is a hierarchically composed biomaterial exhibiting topographical features such as fiber networks, interconnecting pores, and mineral crystallites with dimensions ranging from the macro to the nanoscale [1]. Micro and nanoscale surface topography thus has a strong influence on the proliferation, morphology, and differentiation of various cell types [2]. Therefore, the topographical design of implant surfaces is a promising route toward novel and improved medical implants [1].
Recently, it was demonstrated that even topographical features with a height below 10 nm can affect the adhesion and proliferation of mesenchymal stem cells (MSCs) [3]. However, only few techniques provide reliable control of the nanoscale surface topography over macroscopic areas. Therefore, in this work, we investigate the response of MSCs to well-defined nanorippled surfaces fabricated by ion beam sputtering which enables a precise tuning of the pattern dimensions by adjusting the ion energy [4]. The periodicity and height of the patterns range from 45 to 630 nm and from 3 nm to 70 nm, respectively. A strong influence of the ripple dimensions on MSC proliferation and morphology is observed.
[1] Stevens and George, Science, 310, 1135 (2005).
[2] Lord, Foss, and Besenbacher, Nano Today, 5, 66 (2010).
[3] Dolatshahi-Pirouz et al., ACS Nano, 4, 2874 (2010).
[4] Fassbender et al., New J. Phy., 11, 125002 (2009).

Related publications

  • Lecture (Conference)
    Nanoscale Pattern Formation at Surfaces, 18.-22.09.2011, El Escorial, Spanien

Publ.-Id: 16653