Publications Repository - Helmholtz-Zentrum Dresden-Rossendorf

Ultrafast dynamics in CeTe3 across the pressure-induced charge-density-wave transition

Tauch, J.; Schäfer, H.; Obergfell, M.; Demsar, J.; Giraldo, P.; Fisher, I. R.; Pashkin, A.

Time-resolved optical spectroscopy is a powerful tool for studying ultrafast dynamics of quasiparticles and phonons in strongly correlated electronic systems. In particular, this technique has been efficiently utilized for investigation of charge-density-wave (CDW) compounds [1-3]. In all these studies the system has been tuned across the boundary of the CDW phase by temperature variation. However, application of external (or chemical) pressure can also lead to a suppression of a CDW state caused by an impairment of the Fermi surface nesting [4].
Here, we combine femtosecond time-resolved optical spectroscopy and a diamond anvil cell technology to study the electron and lattice dynamics in tri-telluride compound CeTe3. The optical pump-probe measurements (400 nm pump and 800 nm probe wavelength, respectively) are performed on single crystals mounted inside the pressure cell. CsI has been used as a pressure transmitting medium. Around pressures of 4 GPa we observe a gradual vanishing of the relaxation process related to the recombination of the photoexcited quasiparticles. The coherent oscillations of the phonon modes coupled to the CDW order parameter demonstrate even more dramatic suppression with increasing pressure . These observations clearly indicate a transition into the metallic state of CeTe3 induced by the external pressure.

[1] J. Demsar et al., Phys. Rev. Lett. 83, 800 (1999).
[2] J. Demsar et al., Phys. Rev. B 66, 041101 (2002).
[3] R.V. Yusupov et al., Phys. Rev. Lett. 101, 246402 (2008).
[4] A. Sacchetti et al., Phys. Rev. Lett. 98, 026401 (2007).

Keywords: Time-resolved optical spectroscopy; high pressure; charge-density-waves

  • Poster
    Pressure and Strain Effects in Correlated Electron Materials, 06.-10.10.2014, Dresden, Germany

Publ.-Id: 21206