Radiative Particle in Cell simulations on laser-plasma interactions


Radiative Particle in Cell simulations on laser-plasma interactions

Debus, A.; Pausch, R.; Hübl, A.; Steiniger, K.; Schmitt, F.; Burau, H.; Widera, R.; Pugmire, D.; Juckeland, G.; Nagel, W. E.; Bussmann, M.; Schramm, U.; Cowan, T.; Sauerbrey, R.

We show how to simulate electromagnetic radiation from plasmas using the particle-in-cell code PIConGPU. After an introduction of the methods we present results from Laser-Wakefield simulations and a large scale Kelvin-Helmholtz-simulation (7.2 PFLOP/s) performed on the TITAN cluster in Oakridge. Towards the conclusion we show that these methods also translate to modeling optical free-electron lasers based on Traveling-wave Thomson scattering. (This is a summary, as there was no official abstract.)

Keywords: plasma radiation; laser wakefield acceleration; LWFA; Kelvin-Helmholtz instability; KHI; Traveling-wave Thomson scattering; TWTS; optical free-electron laser

  • Lecture (Conference)
    LA3NET TW3: Novel Acceleration Techniques,, 28.-30.4.2014, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-21356
Publ.-Id: 21356