LWFA at HZDR - Stability by understanding more data

LWFA at HZDR - Stability by understanding more data

Debus, A.; Pausch, R.; Steiniger, K.; Hübl, A.; Burau, H.; Widera, R.; Bussmann, M.; Cowan, T.; Couperus, J. P.; Zarini, O.; Jochmann, A.; Irman, A.; Schramm, U.

After a brief update on the current experimental facilities (DRACO & ELBE) we show how measuring plasma radiation can help understand the dynamics of Laser wakefield accelerators. As an example results of a LWFA simulation including plasma radiation using PIConGPU is shown. The radiation was calculated in many direction, in order to reconstruct a spatial image of the radiation sources within the LWFA structure -- corresponding to an experimental imaging diagnostic of plasma self-emission. This reconstruction enables to pinpoint position and time of LWFA electron injection. As an outlook of what to do with high quality LWFA electrons the project of an optical free electron laser is presented. (This is a summary, as there was no official abstract.)

Keywords: Laser wakefield acceleration; LWFA; plasma radiation; radiative PIC; optical free electron laser; Traveling-wave Thomson scattering; TWTS

  • Lecture (Conference)
    LAOLA Workshop, 06.-7.10.2014, Wismar, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-21360
Publ.-Id: 21360