Quantum oscillations and the Fermi surface topology of the Weyl semimetal NbP
Quantum oscillations and the Fermi surface topology of the Weyl semimetal NbP
Klotz, J.; Wu, S.-C.; Shekhar, C.; Sun, Y.; Schmidt, M.; Nicklas, M.; Baenitz, M.; Uhlarz, M.; Wosnitza, J.; Felser, C.; Yan, B.
The Weyl semimetal NbP was found to exhibit topological Fermi arcs and exotic magnetotransport properties. Here, we report on magnetic quantum-oscillation measurements on NbP and construct the three-dimensional Fermi surface with the help of band-structure calculations. We reveal a pair of spin-orbit-split electron pockets at the Fermi energy and a similar pair of hole pockets, all of which are strongly anisotropic. The Weyl points that are located in the kz ≈ π/c plane are found to exist 5 meV above the Fermi energy. Therefore, we predict that the chiral anomaly effect can be realized in NbP by electron doping to drive the Fermi energy to the Weyl points.
-
Physical Review B 93(2016), 121105(R)
DOI: 10.1103/PhysRevB.93.121105
Cited 58 times in Scopus
Permalink: https://www.hzdr.de/publications/Publ-23498
Publ.-Id: 23498