Topological Hall Effect in an Artificial Skyrmion Lattice

Topological Hall Effect in an Artificial Skyrmion Lattice

Murray, P.; Chen, Z.; Gilbert, D. A.; Zang, J.; Stuckler, T.; Lenz, K.; Maranville, B. B.; Fassbender, J.; Yu, H.; Borchers, J. A.; Liu, K.

Magnetic skyrmions have exciting potential for future device applications in low dissipation information storage [1-3]. While much research has been focused on DMI-stabilized skyrmions in bulk crystals or multilayers, we recently realized Bloch-type artificial skyrmion lattices which are stable at room temperature under zero magnetic field [4], offering a convenient platform for investigating transport characteristics such as the Topological Hall Effect (THE). Here, we report a study of the THE in a different type of planar skyrmion lattice, without any protruding magnetic dots on top.

Keywords: skyrmions; DMI; magnetism; topological hall effect

Related publications

  • Poster
    62nd Annual Conference on Magnetism and Magnetic Materials, MMM 2017, 06.-10.11.2017, Pittsburgh, USA

Publ.-Id: 26289