Site-controlled formation of single Si nanocrystals in a buried SiO₂ matrix using ion beam mixing
Site-controlled formation of single Si nanocrystals in a buried SiO₂ matrix using ion beam mixing
Xu, X.; Prüfer, T.; Wolf, D.; Engelmann, H.-J.; Bischoff, L.; Hübner, R.; Heinig, K.-H.; Möller, W.; Facsko, S.; von Borany, J.; Hlawacek, G.
For future nanoelectronic devices—such as room-temperature single electron transistors—the site controlled formation of single Si Nanocrystal (NC) is a crucial prerequisite. Here, we report an approach to fabricate single Si NCs via medium-energy Si+ or Ne+ ion beam mixing of Si into a buried SiO₂ layer followed by thermally activated phase separation. Binary Collision Approximation and kinetic Monto Carlo methods are conducted to gain atomistic insight into the influence of relevant experimental parameters on the Si NC formation process. Energy Filtered Transmission Electron Microscopy is performed to obtain quantitative values on the Si NC size and distribution in dependence of the layer stack geometry, ion fluence and thermal budget. Employing a focused Ne+ beam from a Helium Ion Microscope, we demonstrate site-controlled self-assembly of single Si NCs. Line irradiation with a fluence of 3000Ne+/nm² and a line width of 4 nm leads to the formation of a chain of Si NCs, and a single NC with 2.2 nm diameter is subsequently isolated and visualized in a few nm thin lamella prepared by Focused Ion Beam (FIB). The Si NC is centered between the SiO₂ layers and the perpendicular to the incident Ne+ beam.
Keywords: Helium Ion Microscopy; ion beam mixing; single electron transistor; phase separation; Monte Carlo simulations
Related publications
- DOI: 10.17815/jlsrf-3-159 is cited by this (Id 28058) publication
-
Beilstein Journal of Nanotechnology 9(2018), 2883-2892
DOI: 10.3762/bjnano.9.267
Cited 14 times in Scopus
Permalink: https://www.hzdr.de/publications/Publ-28058
Publ.-Id: 28058